Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 43,
  • Issue 2,
  • pp. 267-274
  • (1989)

Anomalous Dispersion Effects in Diffuse Reflectance Infrared Fourier Transform Spectroscopy: A Study of Optical Geometries

Not Accessible

Your library or personal account may give you access

Abstract

In this report, the two most common diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) optical geometries (on-axis and off-axis) are investigated in terms of adherence to the Kubelka-Munk theory. It was found that specular reflection, whether in the form of regular Fresnel reflection or diffuse Fresnel reflection, is the major cause of spectral distortion in typical diffuse reflectance measurements. A discussion of the origin of the variation in specular background associated with resonances is presented. Once the adverse effects of specular reflection are minimized, the linear relationship between response and concentration predicted by Kubelka-Munk theory was found to extend to concentrated samples. Up to a point, this was the case even for intense absorption bands where anomalous dispersion leads to large changes in specular intensity.

PDF Article
More Like This
Diffuse reflectance spectroscopy: a comparison of the theories

E. L. Simmons
Appl. Opt. 14(6) 1380-1386 (1975)

Influence of Optical Geometry and Absorption Coefficient on Diffuse Reflectance Values

Åke S:son Stenius
J. Opt. Soc. Am. 45(9) 727-732 (1955)

Diffuse reflectance infrared spectrometry: characteristics of the diffuse and specular components

Paul W. Yang and Henry H. Mantsch
Appl. Opt. 26(2) 326-330 (1987)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved