Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Robust motion-free and error-correcting method of estimating the focal length of a lens

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents a motion-free technique to characterize the focal length of any spherical convex or concave lens. The measurement test-bench uses a Gaussian laser beam, an electronically controlled variable focus lens (ECVFL), a digital micro-mirror device (DMD), and a standard photo-detector (PD). The method requires measuring beam spot sizes for different focal length settings of the ECVFL and using the measurement data to obtain a focal length estimate through an iterative least-squares-based curve-fitting algorithm. The method is also shown to overcome potential measurement errors that arise due to inaccurate placement of optical components on the test-bench as well as unknown principal plane locations of asymmetric lens samples such as plano-convex lenses. Contrary to the commercially deployed and other proposed methods of focal length characterization, this method does not involve any bulk mechanical motion of optical elements. This approach eliminates measurement errors due to gradual mechanical wear and tear and improves measurement repeatability by minimizing mechanical hysteresis. The compact and fully automated method delivers fast, repeatable, and reliable measurements, which we believe makes it ideal for deployment in industrial lens production units and characterizing lenses used in sensitive imaging systems and various other optical experiments and systems. Measured focal lengths are within the 1% manufacturer-provided tolerance values showing excellent agreement between theory and experiments. We also demonstrate measurement robustness by rectifying discrepancies between known and actual separation distances on the measurement test bench.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Talbot interferometry for measuring the focal length of a lens

Yoshiaki Nakano and Kazumi Murata
Appl. Opt. 24(19) 3162-3166 (1985)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.