Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface structural damage study in cortical bone due to medical drilling

Not Accessible

Your library or personal account may give you access

Abstract

A bone’s fracture could be produced by an excessive, repetitive, or sudden load. A regular medical practice to heal it is to fix it in two possible ways: external immobilization, using a ferule, or an internal fixation, using a prosthetic device commonly attached to the bone by means of surgical screws. The bone’s volume loss due to this drilling modifies its structure either in the presence or absence of a fracture. To observe the bone’s surface behavior caused by the drilling effects, a digital holographic interferometer is used to analyze the displacement surface’s variations in nonfractured post-mortem porcine femoral bones. Several nondrilled post-mortem bones are compressed and compared to a set of post-mortem bones with a different number of cortical drillings. During each compression test, a series of digital interferometric holograms were recorded using a high-speed CMOS camera. The results are presented as pseudo 3D mesh displacement maps for comparisons in the physiological range of load (30 and 50 lbs) and beyond (100, 200, and 400 lbs). The high resolution of the optical phase gives a better understanding about the bone’s microstructural modifications. Finally, a relationship between compression load and bone volume loss due to the drilling was observed. The results prove that digital holographic interferometry is a viable technique to study the conditions that avoid the surgical screw from loosening in medical procedures of this kind.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Cortical bone quality affectations and their strength impact analysis using holographic interferometry

Cesar G. Tavera Ruiz, Manuel H. De La Torre-Ibarra, J. M. Flores-Moreno, Claudio Frausto-Reyes, and Fernando Mendoza Santoyo
Biomed. Opt. Express 9(10) 4818-4833 (2018)

Concurrent optical inspection to boost characterization of plastic cortical bone under mechanical deformation

Manuel H. De la Torre I., J. Mauricio Flores M., Valeria Piazza, Edson Daniel Hernandez Velazquez, and Victor H. Hernandez
Appl. Opt. 62(6) 1483-1491 (2023)

Diffuse reflectance spectroscopy-enhanced drill for bone boundary detection

Matthieu Duperron, Konstantin Grygoryev, Gerard Nunan, Cormac Eason, Jacqueline Gunther, Ray Burke, Kevin Manley, and Peter O’brien
Biomed. Opt. Express 10(2) 961-977 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.