Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing

Not Accessible

Your library or personal account may give you access

Abstract

A graphene-based surface plasmon resonance sensor using D-shaped fiber in anti-crossing has been designed. Silver as a plasmon active metal is followed by graphene, which helps in preventing oxidation and shows better adsorption efficiency to biomolecules. A wavelength interrogation technique based on the finite element method has been used to evaluate performance parameters. Design parameters such as thickness of silver, residual cladding, and GeO2 dopant concentration have been optimized. The wavelength sensitivity is found to be 6800nm/RIU and resolution of 8.05×105RIU. We believe that usage of graphene on silver may open a new window for study of online biomolecular interaction.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Numerical and analytical analysis of an ultrahigh sensitive surface plasmon resonance sensor based on a black phosphorene/graphene heterostructure

Abolfazl Nourizad, Saeed Golmohammadi, Mohammad Reza Tohidkia, and Ayuob Aghanejad
Appl. Opt. 62(25) 6542-6552 (2023)

Ultrahigh sensitive surface plasmon sensor using a nanofilm coated D-type photonic crystal fiber

Xuanyi Liu, G. Melwin, M. S. Aruna Gandhi, H. Y. Fu, P. Ramesh Babu, K. Senthilnathan, and Qian Li
Appl. Opt. 60(9) 2591-2598 (2021)

D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance

Guowen An, Xiaopeng Hao, Shuguang Li, Xin Yan, and Xuenan Zhang
Appl. Opt. 56(24) 6988-6992 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.