Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiple-image encryption using polarized light encoding and the optical interference principle in the Fresnel-transform domain

Not Accessible

Your library or personal account may give you access

Abstract

We propose a multiple-image encryption scheme, based on polarized light encoding and the interference principle of phase-only masks (POMs), in the Fresnel-transform (FrT) domain. In this scheme, each secret image is converted into an intensity image by polarized light encoding, where a random key image and a pixilated polarizer with random angles are employed as keys. The intensity encrypted images produced by different secret images are convolved together and then inverse Fresnel-transformed. Phase and amplitude truncations are used to generate the asymmetric decryption keys. The phase-truncated inverse FrT spectrum is sent into an interference-based encryption (IBE) system to analytically obtain two POMs. To reduce the transmission and storage load on the keys, the chaotic mapping method is employed to generate random distributions of keys for encryption and decryption. One can recover all secret images successfully only if the corresponding decryption keys, the mechanism of FrTs, and correct chaotic conditions are known. The inherent silhouette problem can be thoroughly resolved by polarized light encoding in this proposal, without using any time-consuming iterative methods. The entire encryption and decryption process can be realized digitally, or in combination with optical means. Numerical simulation results are presented to verify the effectiveness and performance of the proposed scheme.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiple-image encryption based on interference principle and phase-only mask multiplexing in Fresnel transform domain

Qu Wang, Qing Guo, Liang Lei, and Jinyun Zhou
Appl. Opt. 52(28) 6849-6857 (2013)

Image encryption using polarized light encoding and amplitude and phase truncation in the Fresnel domain

Sudheesh K. Rajput and Naveen K. Nishchal
Appl. Opt. 52(18) 4343-4352 (2013)

Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform

Sudheesh K. Rajput and Naveen K. Nishchal
Appl. Opt. 52(4) 871-878 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved