Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements

Not Accessible

Your library or personal account may give you access

Abstract

Above-water measurements of water-leaving radiance are widely used for water-quality monitoring and ocean-color satellite data validation. Reflected skylight in above-water radiometry needs to be accurately estimated prior to derivation of water-leaving radiance. Up-to-date methods to estimate reflection of diffuse skylight on rough sea surfaces are based on radiative transfer simulations and sky radiance measurements. But these methods neglect the polarization state of the incident skylight, which is generally highly polarized. In this paper, the effects of polarization on the sea surface reflectance and the subsequent water-leaving radiance estimation are investigated. We show that knowledge of the polarization field of the diffuse skylight significantly improves above-water radiometry estimates, in particular in the blue part of the spectrum where the reflected skylight is dominant. A newly developed algorithm based on radiative transfer simulations including polarization is described. Its application to the standard Aerosol Robotic Network-Ocean Color and hyperspectral radiometric measurements of the 1.5-year dataset acquired at the Long Island Sound site demonstrates the noticeable importance of considering polarization for water-leaving radiance estimation. In particular it is shown, based on time series of collocated data acquired in coastal waters, that the azimuth range of measurements leading to good-quality data is significantly increased, and that these estimates are improved by more than 12% at 413 nm. Full consideration of polarization effects is expected to significantly improve the quality of the field data utilized for satellite data validation or potential vicarious calibration purposes.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Long Island Sound Coastal Observatory: Assessment of above-water radiometric measurement uncertainties using collocated multi and hyperspectral systems

Tristan Harmel, Alexander Gilerson, Soe Hlaing, Alberto Tonizzo, Tom Legbandt, Alan Weidemann, Robert Arnone, and Samir Ahmed
Appl. Opt. 50(30) 5842-5860 (2011)

Long Island Sound Coastal Observatory: assessment of above-water radiometric measurement uncertainties using collocated multi and hyper-spectral systems: reply to comment

Tristan Harmel, Alexander Gilerson, Soe Hlaing, Alan Weidemann, Robert Arnone, and Samir Ahmed
Appl. Opt. 51(17) 3893-3899 (2012)

Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters

Soe Hlaing, Alexander Gilerson, Tristan Harmel, Alberto Tonizzo, Alan Weidemann, Robert Arnone, and Samir Ahmed
Appl. Opt. 51(2) 220-237 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved