Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

150 W high-average-power, single-frequency nanosecond fiber laser in strictly all-fiber format

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate an all-fiber, single-frequency nanosecond laser with both high peak power and average power based on a master oscillator power amplifier (MOPA) configuration. The MOPA produced a single-frequency pulsed laser with pulse duration of 8ns. The average and peak power were as much as 139.3 W and 1.07 kW, respectively, when the repetition rate was 10 MHz, and 153.1 and 668 W, respectively, when the repetition rate was 20 MHz. Higher output power can be obtained by increasing pump power of the main amplifier.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
All-fiber high-average power nanosecond-pulsed master-oscillator power amplifier at 2  μm with mJ-level pulse energy

Xiong Wang, Xiaoxi Jin, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu
Appl. Opt. 55(8) 1941-1945 (2016)

High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling

Qiang Fang, Wei Shi, Khanh Kieu, Eliot Petersen, Arturo Chavez-Pirson, and Nasser Peyghambarian
Opt. Express 20(15) 16410-16420 (2012)

240  W high-average-power square-shaped nanosecond all-fiber-integrated laser with near diffraction-limited beam quality

Hailong Yu, Rumao Tao, Xiaolin Wang, Pu Zhou, and Jinbao Chen
Appl. Opt. 53(28) 6409-6413 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.