Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties

Not Accessible

Your library or personal account may give you access

Abstract

A simplified approach is proposed to simulate the fluorescence signal from a fluorophore submerged inside a turbid medium using the Monte Carlo method. Based on the reversibility of photon propagation, the fluorescence signal can be obtained from a single Monte Carlo simulation of the excitation light. This is computationally less expensive and also allows for the direct use of well-validated nonfluorescence photon migration Monte Carlo codes. Fluorescence signals from a mouse tissuelike phantom were computed using both the simplified Monte Carlo simulation and the diffusion approximation. The relative difference of signal intensity was found to be at most 30% for a fluorophore placed in the medium at various depths and horizontally midway between a source–detector pair separated by 3  mm. The difference in time characteristics of the signal is also examined.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues

Johannes Swartling, Antonio Pifferi, Annika M. K. Enejder, and Stefan Andersson-Engels
J. Opt. Soc. Am. A 20(4) 714-727 (2003)

Sensitivity characterization of a time-domain fluorescence imager: eXplore Optix

Guobin Ma, Pascal Gallant, and Laura McIntosh
Appl. Opt. 46(10) 1650-1657 (2007)

Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results

Fabrizio Martelli, Daniele Contini, Adriana Taddeucci, and Giovanni Zaccanti
Appl. Opt. 36(19) 4600-4612 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved