Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles

Not Accessible

Your library or personal account may give you access

Abstract

The effect of ice crystal size and shape on the relation between radar reflectivity and optical extinction is examined. Discrete-dipole approximation calculations of 95-GHz radar reflectivity and ray-tracing calculations are applied to ice crystals of various habits and sizes. Ray tracing was used primarily to calculate optical extinction and to provide approximate information on the lidar backscatter cross section. The results of the combined calculations are compared with Mie calculations applied to collections of different types of equivalent spheres. Various equivalent sphere formulations are considered, including equivalent radar-lidar spheres; equivalent maximum dimension spheres; equivalent area spheres, and equivalent volume and equivalent effective radius spheres. Marked differences are found with respect to the accuracy of different formulations, and certain types of equivalent spheres can be used for useful prediction of both the radar reflectivity at 95 GHz and the optical extinction (but not lidar backscatter cross section) over a wide range of particle sizes. The implications of these results on combined lidar-radar ice cloud remote sensing are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar

Hajime Okamoto, Kaori Sato, Anatoli Borovoi, Hiroshi Ishimoto, Kazuhiko Masuda, Alexander Konoshonkin, and Natalia Kustova
Opt. Express 27(25) 36587-36600 (2019)

Radar-lidar ratio for ice crystals of cirrus clouds

Zhenzhu Wang, Victor Shishko, Natalia Kustova, Alexander Konoshonkin, Dmitry Timofeev, Chenbo Xie, Dong Liu, and Anatoli Borovoi
Opt. Express 29(3) 4464-4474 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved