Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multipoint temperature-independent fiber-Bragg-grating strain-sensing system employing an optical-power-detection scheme

Not Accessible

Your library or personal account may give you access

Abstract

A temperature-independent fiber-Bragg-grating strain-sensing system, based on a novel optical-power-detection scheme, is developed and analyzed. In this system a pair of fiber Bragg gratings with reflection spectra either partially or substantially overlapping is placed side by side to form a temperature-independent strain-sensor unit. Conventional wavelength-interrogation techniques are not used here, and instead an optical-power-detection scheme is proposed to directly calibrate the measurand, i.e., the strain. Unlike the conventional approach in a multiplexed sensing system, the presented power-detection-based interrogation method does not need the fiber-Bragg-grating sensors to be spectrally separate. The only requirement is that the spectra of the two fiber Bragg gratings of each sensor unit in a multiplexed system be identical or slightly separate (slightly overlapping spectra would also work in the sensing scheme) and the source’s optical power be sufficient for sensitive measurement. Based on a three-sensor-unit system, we demonstrate simple strain measurements of high linearity (±0.4%), good sensitivity [2 microstrains (µS)], high thermal stability (±0.8%), and zero cross talk. The effects of light source spectral flatness and fiber bending loss on measurement accuracy are also discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Integrated hybrid Raman/fiber Bragg grating interrogation scheme for distributed temperature and point dynamic strain measurements

Farhan Zaidi, Tiziano Nannipieri, Marcelo A. Soto, Alessandro Signorini, Gabriele Bolognini, and Fabrizio Di Pasquale
Appl. Opt. 51(30) 7268-7275 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved