Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adjacency effects on water surfaces: primary scattering approximation and sensitivity study

Not Accessible

Your library or personal account may give you access

Abstract

The making of atmospheric corrections is a critical task in the interpretation of ocean color imagery. In coastal areas, a fraction of the light reflected by the land reaches a sensor. Modeling the reduction of image contrast when the atmospheric turbidity increases, the so-called adjacency effect, requires large amounts of computing time. To model this effect we developed a simple approach based on the primary scattering approximation for both nadir and off-nadir views. A sensitivity study indicates that the decisive criterion for measurement accuracy for aerosols is their vertical distribution. As this distribution cannot generally be determined from space, it is not possible to include a suitable correction of the adjacency effects on satellite imagery. Conversely, we propose a simple correction for molecular scattering based on the isotropic approximation. We also address the problem of reduction of the coupling between the Fresnel reflection and the atmosphere for observations of coastal water. We study the influence of the adjacency effects on determination of the abundance of chlorophyll in water by combining use of the red and the infrared bands for aerosol remote sensing and the blue/green-ratio technique for retrieval of these data.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulation and analysis of adjacency effects in coastal waters: a case study

Barbara Bulgarelli, Viatcheslav Kiselev, and Giuseppe Zibordi
Appl. Opt. 53(8) 1523-1545 (2014)

Atmospheric correction of satellite ocean color imagery: the black pixel assumption

David A. Siegel, Menghua Wang, Stéphane Maritorena, and Wayne Robinson
Appl. Opt. 39(21) 3582-3591 (2000)

Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters

Kevin George Ruddick, Fabrice Ovidio, and Machteld Rijkeboer
Appl. Opt. 39(6) 897-912 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (24)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.