Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Regularization of the image division approach to blind deconvolution

Not Accessible

Your library or personal account may give you access

Abstract

A problem of blind deconvolution arises when one attempts to restore a short-exposure image that has been degraded by random atmospheric turbulence. We attack the problem by using two short-exposure images as data inputs. The Fourier transform of each is taken, and the two are divided. The result is the quotient of the two unknown transfer functions. The latter are expressed, by means of the sampling theorem, as Fourier series in corresponding point-spread functions, the unknowns of the problem. Cross multiplying the division equation gives an equation that is linear in the unknowns. However, the problem has, initially, a multiplicity of solutions. This deficiency is overcome by use of the prior knowledge that the object and the point-spread functions have finite (albeit unknown) support extensions and also are positive. The result is a fixed-length, linear algorithm that is regularized to the presence of 4–15% additive noise of detection.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Comparison of direct blind deconvolution methods for motion-blurred images

Yitzhak Yitzhaky, Ruslan Milberg, Sergei Yohaev, and Norman S. Kopeika
Appl. Opt. 38(20) 4325-4332 (1999)

Regularization-parameter-free optimization approach for image deconvolution

Sunaina Rajora, Mansi Butola, and Kedar Khare
Appl. Opt. 60(19) 5669-5677 (2021)

Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur

Joanne Markham and José-Angel Conchello
J. Opt. Soc. Am. A 16(10) 2377-2391 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.