Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

T-matrix computations of light scattering by red blood cells

Not Accessible

Your library or personal account may give you access

Abstract

The electromagnetic far field, as well as the near field, originating from light interaction with a red blood cell (RBC) volume-equivalent spheroid, was analyzed by utilizing the T-matrix theory. This method is a powerful tool that makes it possible to study the influence of cell shape on the angular distribution of scattered light. General observations were that the three-dimensional shape, as well as the optical thickness apparent to the incident field, affects the forward scattering. The backscattering was influenced by the shape of the surface facing the incident beam. Furthermore sphering as well as elongation of an oblate RBC into a volume-equivalent sphere or a prolate spheroid, respectively, was theoretically modeled to imitate physiological phenomena caused, e.g., by heat or the increased shear stress of flowing blood. Both sphering and elongation were shown to decrease the intensity of the forward-directed scattering, thus yielding lower g factors. The sphering made the scattering pattern independent of azimuthal scattering angle ϕs, whereas the elongation induced more apparent ϕs-dependent patterns. The light scattering by a RBC volume-equivalent spheroid was thus found to be highly influenced by the shape of the scattering object. A near-field radius r nf was evaluated as the distance to which the maximum intensity of the total near field had decreased to 2.5 times that of the incident field. It was estimated to 2–24.5 times the maximum radius of the scattering spheroid, corresponding to 12–69 μm. Because the near-field radius was shown to be larger than a simple estimation of the distance between the RBC’s in whole blood, the assumption of independent scattering, frequently employed in optical measurements on whole blood, seems inappropriate. This also indicates that one cannot extrapolate the results obtained from diluted blood to whole blood by multiplying with a simple concentration factor.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Scattering of He–Ne laser light by an average-sized red blood cell

Stephanos V. Tsinopoulos and Demosthenes Polyzos
Appl. Opt. 38(25) 5499-5510 (1999)

Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation

Maxim A. Yurkin, Konstantin A. Semyanov, Peter A. Tarasov, Andrei V. Chernyshev, Alfons G. Hoekstra, and Valeri P. Maltsev
Appl. Opt. 44(25) 5249-5256 (2005)

Light scattering by aggregated red blood cells

Stephanos V. Tsinopoulos, Euripides J. Sellountos, and Demosthenes Polyzos
Appl. Opt. 41(7) 1408-1417 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved