Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Feasibility study of a scalable optical interconnection network for massively parallel processing systems

Not Accessible

Your library or personal account may give you access

Abstract

The theoretical modeling of a novel topology for scalable optical interconnection networks, called optical multimesh hypercube (OMMH), is developed to predict size, bit rate, bit-error rate, power budget, noise, efficiency, interconnect distance, pixel density, and misalignment sensitivity. The numerical predictions are validated with experimental data from commercially available products to assess the effects of various thermal, system, and geometric parameters on the behavior of the sample model. OMMH is a scalable network architecture that combines positive features of the hypercube (small diameter, regular, symmetric, and fault tolerant) and the mesh (constant node degree and size scalability). The OMMH is implemented by a free-space imaging system incorporated with a space-invariant hologram for the hypercube links and fiber optics to provide the mesh connectivity. The results of this work show that the free-space links can operate at 368 Mbits/s and the fiber-based links at 228 Mbits/s for a bit-error rate of 10−17per channel. The predicted system size for 32 nodes in the OMMH is 4.16 mm × 4.16 mm × 3.38 cm. Using 16-bit, bit-parallel transmission per node, the system can operate at a bit rate of up to 5.88 Gbits/s for a size of 1.04 cm × 1.04 cm × 3.38 cm.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Scalable optical hypercube-based interconnection network for massively parallel computing

Ahmed Louri and Hongki Sung
Appl. Opt. 33(32) 7588-7598 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved