Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetic wave scattering by highly elongated and geometrically composite objects of large size parameters: the generalized multipole technique

Not Accessible

Your library or personal account may give you access

Abstract

The potency and versatility of a numerical procedure based on the generalized multipole technique (GMT) are demonstrated in the context of full-vector electromagnetic interactions for general incidence on arbitrarily shaped, geometrically composite, highly elongated, axisymmetric perfectly conducting or dielectric objects of large size parameters and arbitrary constitutive parameters. Representative computations that verify the accuracy of the technique are given for a large category of problems that have not been considered previously by the use of the GMT, to our knowledge. These problems involve spheroids of axial ratios as high as 20 and with the largest dimension of the dielectric object along the symmetry axis equal to 75 wavelengths; sphere–cone–sphere geometries; peanut-shaped scatterers; and finite-length cylinders with hemispherical, spherical, and flat end caps. Whenever possible, the extended boundary-condition method has been used in the process of examining the applicability of the suggested solution, with excellent agreement being achieved in all cases considered. It is believed that the numerical-scattering results presented here represent the largest detailed three-dimensional precise modeling ever verified as far as expansion functions that fulfill Maxwell’s equations throughout the relevant domain of interest are concerned.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Electromagnetic scattering by an aggregate of spheres

Yu-lin Xu
Appl. Opt. 34(21) 4573-4588 (1995)

Extension of the generalized multipole technique to three-dimensional anisotropic scatterers

Nicolas B. Piller and Olivier J. F. Martin
Opt. Lett. 23(8) 579-581 (1998)

Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies

P. Barber and C. Yeh
Appl. Opt. 14(12) 2864-2872 (1975)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.