Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Free-space optical mesh-connected bus networks using wavelength-division multiple access

Not Accessible

Your library or personal account may give you access

Abstract

A novel optical free-space mesh-connected bus interconnect network architecture is proposed. A mesh-connected bus [IEEE Trans. Comput. C-30, 264–273 (1981)] is known to have the capability of interconnecting, with a three-stage switching, N nodes with a power distribution loss proportional to N and is therefore advantageous for networking a large number, say over 1000, of communicating ports. Based on conventional space-invariant optical components in a compact and efficient geometry, the proposed optical mesh-connected bus system concept can be used to build either free-space optical interconnect links for parallel processing applications or central switching systems for local or global lightwave communication networks. The proposed architecture lends itself to networking under both the wavelength-division multiple access and other multiple-access environments. In this paper, based on the wavelength-division multiple-access environment, various optical system implementation and performance issues are discussed and parameters are analyzed. It was found that by use of a reasonably compact three-dimensional free-space volume, more than 100,000 dispersion-limited communication nodes at a uniform channel spacing of 0.75 nm can be linked with a moderate power distribution loss of 28 dB. Some preliminary optical wavelength-division multiple-access mesh-connected bus experiments based on a 27 × 27 panchromatic optical source array were performed to confirm the operational principle of the proposed concept.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Reflective optical ring-array interconnects: an optical system design study

Berlin Ha and Yao Li
Appl. Opt. 32(29) 5727-5740 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (22)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.