Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods

Not Accessible

Your library or personal account may give you access

Abstract

A variety of frequency-modulation methods for high-sensitivity absorption detection of gas-phase species has evolved in recent years. The distinctions among these methods are mostly semantic. The mathematical derivations for wavelength-modulation spectroscopy and one- and two-tone frequency-modulation spectroscopies are presented; a common terminology is used to permit a comprehensive comparison of predicted detection sensitivities. Applying this formalism, I compare the optimum detection sensitivities of these different methods for a typical laser system, using the same parameters. As long as residual amplitude modulation is minimized by proper adjustment of the detection phase angle, high-frequency wavelength modulation and one- and two-tone frequency-modulation methods all achieve approximately the same sensitivities. The choice among techniques is most strongly driven by the individual laser tuning characteristics, the absorption linewidth, and the detection bandwidth. It is shown that excess laser noise cannot always be excluded from consideration, even at megahertz detection frequencies. Also, detection at harmonics of the modulation or beat frequency may present certain advantages in minimizing residual amplitude-modulation noise.

© 1992 Optical Society of America

Full Article  |  PDF Article

Corrections

Joel A. Silver, "Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods: errata," Appl. Opt. 31, 4927-4927 (1992)
https://opg.optica.org/ao/abstract.cfm?uri=ao-31-24-4927

More Like This
Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser

David S. Bomse, Alan C. Stanton, and Joel A. Silver
Appl. Opt. 31(6) 718-731 (1992)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved