Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation

Not Accessible

Your library or personal account may give you access

Abstract

Relying on van de Hulst’s localization principle, a localized approximation to the generalized Lorenz-Mie theory is introduced. The validation of this simple approximation is obtained from numerical comparisons the Rayleigh-Gans theory. Other comparisons concerning scattering profiles are carried out first with theoretical data published in the literature and later with experimental measurements. Original results are given for coal particles as an example of the versatility of the method.

© 1986 Optical Society of America

Full Article  |  PDF Article
More Like This
Evaluation of laser-sheet beam shape coefficients in generalized Lorenz–Mie theory by use of a localized approximation

K. F. Ren, G. Gréhan, and G. Gouesbet
J. Opt. Soc. Am. A 11(7) 2072-2079 (1994)

Forward scattering of a Gaussian beam by a nonabsorbing sphere

J. T. Hodges, G. Gréhan, G. Gouesbet, and C. Presser
Appl. Opt. 34(12) 2120-2132 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved