Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical rain gauge using a divergent beam

Not Accessible

Your library or personal account may give you access

Abstract

We have shown that path-averaged rain rates can be obtained from the raindrop-induced amplitude scintillations of a divergent laser beam (spherical wave case). We found that the rain rate obtained from a divergent beam is less sensitive to drop-size distribution than that from a collimated beam. However, the path-weighting function is heavily weighted toward the receiving end in the spherical wave case, whereas in the plane wave case, it is almost uniformly weighted along the optical path. The theory was confirmed by observations on two optical paths, one using a collimated beam on a 200-m path, the other using a divergent beam on a 1000-m path. The results for the longer path show a saturation effect for rain rates higher than 12 mm/h.

© 1980 Optical Society of America

Full Article  |  PDF Article
More Like This
Simplified optical path-averaged rain gauge

Ting-i Wang, K. B. Earnshaw, and R. S. Lawrence
Appl. Opt. 17(3) 384-390 (1978)

Laser rain gauge: near-field effect

Ting-i Wang, P. N. Kumar, and D. J. Fang
Appl. Opt. 22(24) 4008-4012 (1983)

Measurement of rain parameters by optical scintillation

Ting-i Wang, G. Lerfald, R. S. Lawrence, and S. F. Clifford
Appl. Opt. 16(8) 2236-2241 (1977)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.