Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Light Scattering from Coated Spheres: Model for Biological Cells

Not Accessible

Your library or personal account may give you access

Abstract

Efficient methods for the calculation of light scattering intensity functions for concentrically coated spheres (~10-μ diam) are discussed. This model represents many types of biological cells whose nuclei have a low refractive index (~1.1) and cytoplasms with a slightly lower refractive index. Studies are made on the relationships between the scattering coefficients for nonabsorbing, spherically symmetric scatterers. The physical origin of these coefficients is examined for absorbingscatterers. A comparison of the angular half-width of the scattered intensity functions for the coated sphere and an equivalent homogeneous sphere shows that diffraction dominates the small angle scattering in both cases. At larger angles, the coated sphere scattering pattern is more structured and quite sensitive to core sphere size, suggesting a possible method of distinguishing types of biological cells that are similar in gross size but different in internal detail.

© 1972 Optical Society of America

Full Article  |  PDF Article
More Like This
Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics

Judith R. Mourant, James P. Freyer, Andreas H. Hielscher, Angelia A. Eick, Dan Shen, and Tamara M. Johnson
Appl. Opt. 37(16) 3586-3593 (1998)

Paraxial analysis of light scattering by biological cells in a flow system

B. J. Pernick, M. R. Wohlers, and J. Mendelsohn
Appl. Opt. 17(20) 3205-3215 (1978)

Light scattering by a coated sphere illuminated with a Gaussian beam

Elsayed E. M. Khaled, Steven C. Hill, and Peter W. Barber
Appl. Opt. 33(15) 3308-3314 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved