Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Endurance of chalcogenide optical phase change materials: a review: erratum

Open Access Open Access

Abstract

We present and erratum to our review article [Opt. Mater. Express 12, 2145 (2022) [CrossRef]  ]. This erratum corrects the references in Table 3, a typo, and a misleading sentence. These corrections do not affect conclusions of the original review article.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Due to a dysfunctioning reference software, we present an erratum for [1], correcting several references for Table 3, shown below. The table references are provided in the bibliography section of this article with the numbering from the article, along with correction in [124] and [132] (inverted), as well as references [100] and [101] (inverted).

ReferenceMaterialPatterningEndurance (Cycles)Switching MechanismDeposition MethodCapping LayerSwitched area
[144]GSTNo Patterning1.3 × 102ElectricalSputtering10 nm ITO10−2 µm2
[26]GSTNo Patterning50OpticalSputtering100 nm ZnS/SiO2104 µm2
[113]Sb2S3No Patterning7 × 103OpticalThermal Evaporation10 nm Al2O3Unspecified
[104]GSSTLift-Off40ElectrothermalThermal Evaporation15 nm Al2O3104 µm2
[53]Sb2Se3Lift-off> 125ElectrothermalThermal Evaporation15 nm Al2O325 µm2
[47]Sb2Se3No Patterning5 × 103OpticalSputtering200 nm ZnS/SiO2104 µm2
[47]Sb2S3No Patterning103OpticalSputtering200 nm ZnS/SiO2104 µm2
[52]Sb2Se3Lift-off5 × 102OpticalSputtering200 nm ZnS/SiO2103 µm2
[110]GSTLift-off> 5 × 102ElectrothermalSputtering30 nm Al2O31 µm2
[45]GSSTLift-off> 103ElectrothermalThermal Evaporation20 nm MgF2102 µm2
[145]Ge2Sb2Se5Lift-off> 5 × 105ElectrothermalThermal Evaporation600 nm Al2O3104 µm2
[146]Sb7Te3 1.5 × 108ElectrothermalUnspecifiedUnspecifiedUnspecified
[116]GST-2 × 1012ElectricalALDUnspecified10−3 µm2
[117]D-GST-> 109ElectricalSputteringUnspecifiedUnspecified

In section 3.2, we have corrected the sentence describing the consequences of electromigration on elemental segregation as follows:

In the case of our reference GST alloy, this difference is substantial, with an electronegativity of 5.49 eV for Te compared to 4.6 and 4.85 eV for Ge and Sb respectively [127]. By analyzing PCM cells which failed under DC bias, it has been observed that Sb and Ge migrate towards the cathode while Te moves toward the anode [124, 127] While electromigration is relatively slow in the solid phase, it is much faster in the liquid phase, e.g. upon re-amorphization, eventually leading to mechanical failure (see Fig. 8).

Finally, in section 3.3, we have corrected a typography, replacing Sb2S3 with Sb2Se3

Sb2Se3 and Sb2S3 are two promising alloys with moderate index contrast, which have also shown different behavior under switching. Recent works cycling thermally evaporated Sb2Se3 capped with 10 nm Al2O3 have shown cyclability over a minimum of 125 cycles [53].

Funding

Charles Stark Draper Laboratory; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (P500PT_203222).

References

1. L. Martin-Monier, C. C. Popescu, L. Ranno, B. Mills, S. Geiger, D. Callahan, M. Moebius, and J.-J. Hu, “Endurance of chalcogenide optical phase change materials: a review,” Opt. Mater. Express 12(6), 2145–2167 (2022). [CrossRef]  

26. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013). [CrossRef]  

45. Y. Zhang, J. B. Chou, J. Li, H. Li, Q. Du, A. Yadav, S. Zhou, M. Y. Shalaginov, Z. Fang, H. Zhong, C. Roberts, P. Robinson, B. Bohlin, C. Ríos, H. Lin, M. Kang, T. Gu, J. Warner, V. Liberman, K. Richardson, and J. Hu, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 4279 (2019). [CrossRef]  

47. M. Delaney, I. Zeimpekis, D. Lawson, D. W. Hewak, and O. L. Muskens, “A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3,” Adv. Funct. Mater. 30(36), 2002447 (2020). [CrossRef]  

52. M. Delaney, I. Zeimpekis, H. Du, X. Yan, M. Banakar, D. J. Thomson, D. W. Hewak, and O. L. Muskens, “Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material,” Sci. Adv. 7(25), 3500–3516 (2021). [CrossRef]  

53. C. Ríos, Q. Du, Y. Zhang, C.-C. Popescu, M. Y. Shalaginov, P. Miller, C. Roberts, M. Kang, K. A. Richardson, T. Gu, S. A. Vitale, and J. Hu, “Ultra-compact nonvolatile photonics based on electrically reprogrammable transparent phase change materials,” arXiv:2105.06010 (2021).

100. D. Gao, B. Liu, Y. Li, Z. Song, W. Ren, J. Li, Z. Xu, S. Lü, N. Zhu, J. Ren, Y. Zhan, H. Wu, and S. Feng, “The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory,” J. Semicond. 36(5), 056001 (2015). [CrossRef]  

101. S.-K. Kang, M. H. Jeon, J. Y. Park, G. Y. Yeom, M. S. Jhon, B. W. Koo, and Y. W. Kim, “Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5,” J. Electrochem. Soc. 158(8), H768 (2011). [CrossRef]  

104. Y. Zhang, C. Fowler, J. Liang, B. Azhar, M. Y. Shalaginov, S. Deckoff-Jones, S. An, J. B. Chou, C. M. Roberts, V. Liberman, M. Kang, C. Ríos, K. A. Richardson, C. Rivero-Baleine, T. Gu, H. Zhang, and J. Hu, “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol. 16(6), 661–666 (2021). [CrossRef]  

110. J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, and A. Majumdar, “Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater,” Adv. Mater. 32(31), 2001218 (2020). [CrossRef]  

113. K. Gao, K. Du, S. Tian, H. Wang, L. Zhang, Y. Guo, B. Luo, W. Zhang, and T. Mei, “Intermediate phase-change states with improved cycling durability of Sb2S3 by femtosecond multi-pulse laser irradiation,” Adv. Funct. Mater. 31(35), 2103327 (2021). [CrossRef]  

116. S. B. Kim, G. W. Burr, W. Kim, and S. W. Nam, “Phase-change memory cycling endurance,” MRS Bull. 44(09), 710–714 (2019). [CrossRef]  

117. C. F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, “Endurance improvement of Ge2Sb2Te5-based phase change memory,” 2009 IEEE Int. Mem. Work. IMW ‘09 (2009).

124. Y. J. Park, T. Y. Yang, J. Y. Cho, S. Y. Lee, and Y. C. Joo, “Electrical current-induced gradual failure of crystalline Ge2Sb2Te5 for phase-change memory,” Appl. Phys. Lett. 103(7), 073503 (2013). [CrossRef]  

127. T. Y. Yang, I. M. Park, B. J. Kim, and Y. C. Joo, “Atomic migration in molten and crystalline Ge2Sb2Te5 under high electric field,” Appl. Phys. Lett. 95(3), 032104 (2009). [CrossRef]  

132. J.-B. Park, G.-S. Park, H.-S. Baik, J.-H. Lee, H. Jeong, and K. Kim, “Phase-change behavior of stoichiometric Ge2Sb2Te5 in phase-change random access memory,” J. Electrochem. Soc. 154(3), H139 (2007). [CrossRef]  

144. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phasechange films,” Nature 511(7508), 206–211 (2014). [CrossRef]  

145. J. Meng, Y. Gui, B. M. Nouri, G. Comanescu, X. Ma, Y. Zhang, C.-C. Popescu, M. Kang, M. Miscuglio, N. Peserico, K. A. Richardson, J. Hu, H. Dalir, and V. J. Sorger, “Electrical programmable multi-level non-volatile photonic random-access memory,” arXiv:2203.13337 (2022).

146. J. Moon, H. Seo, K. K. Son, E. Yalon, K. Lee, E. Flores, G. Candia, and E. Pop, “Reconfigurable infrared spectral imaging with phase change materials,” in SPIE Proceedings (SPIE, 2019), Vol. 10982, p. 32.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.