Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Concentrating evanescent waves: Systematic analyses of properties of the needle beam in three-medium dielectric cylindrical waveguide

Open Access Open Access

Abstract

Needle beam is a guided beam with nanoscale beam size and significant power propagating in core area of a three-layer dielectric waveguide. Systematical numerical analyses of properties of the needle beam are presented. Properties of the fundamental mode of the needle beam, including field distribution, power distribution, and power concentration, are calculated for different waveguide parameters. It is shown that there is an optimum value of normalized frequency for maximum power concentration. Concentrated power is higher if the refractive index difference between the core and the middle layer is higher.

©2011 Optical Society of America

1. Introduction

Evanescent waves are an interesting near-filed phenomenon and have many applications in macroscopic imaging, coupling, and resonant transmissions. There are many research activities to control and manipulate evanescent waves at optical interfaces and waveguides. The “needle beam” was proposed for concentrating power of evanescent waves on a nanometer scale in a three dielectric medium cylindrical waveguide [1,2]. This novel approach is different from other attempts to realize nanoscale optical beam propagations involving mainly plasmon resonance [38]. It has been a challenging task to obtain light propagation with nanoscale beam size and significant power. One approach was to use a tiny hole as an aperture to reduce the beam size. For light transmission through the tiny holes, the main problems are extremely low transmission and strong diffraction [9]. A number of methods have been proposed to overcome the diffraction limit of light transmitting through a tiny hole. Ideas of using plasmons formed at metal/dielectric interfaces have been widely exploited, including transmission through a single aperture in a metal film [37], the formation of a one-dimensional optical beam [10], and plasmon guiding through an array of closely spaced metal nanoparticles [8]. However, all these designs have propagation loss much larger than that in pure dielectric media. A different idea, without using metal, was proposed to guide and, at the same time, concentrate light in one-dimensional low-refractive index material [11,12]. Light was guided in a one-dimensional air slot between two high-refractive index rectangular regions. It utilizes the discontinuity of the normal component of the electric field of the quasi-TE mode at the interface with large difference in refractive index. Another realized approach was the subwavelength-diameter silica wires [13]. Although the propagation loss along the wires is not significant, there is a larger amount of power propagating outside the wire.

The needle beam has two interesting properties, i.e., high-power light concentration in a nanometer scale and guided beam propagation in cylindrical waveguide for practical applications. The results in [1,2] showed that there exists eigenmodes in the nanoscale central area in a three-layer cylindrical dielectric waveguide. Only TE01 and TM01 modes were considered in [1,2] as an example to illustrate the phenomenon of nanoscale light concentration. Systematic analyses of the light propagation in the three-medium waveguide are needed in order to fully understand the properties of the needle beam. In fact, to obtain the maximum concentrated power in a small area, it is necessary to consider the solution of all modes. This paper presents general solutions of all eigenmodes in a three-layer cylindrical dielectric waveguide and gives the corresponding light propagation characteristics, especially power concentrations in the core area, for nanoscale beam propagation.

2. Governing Equations and Mode Conditions

The structure and the refractive index profile of a three-layer cylindrical waveguide are shown in Fig. 1 . The refractive index of the middle medium is highest, that is, n2>n1 and n2>n3.The relationship between n1 and n3 is not fixed. Since the waveguide is cylindrically symmetric, we use the cylindrical coordinate system in our analyses. The field components are Er, Eφ, Ez, Hr, Hφ, Hz. Here, z is the propagation direction. It is well known that wave equations for the z components are [14]

(2+k2){EzHz}=0,
where ∇2 is the Laplacian operator, k = 2π /λ (λ is the wavelength). Solutions to Eq. (1) take the form
{EzHz}=ψ(r)exp[i(wt+lφβz)]
where β is the propagation constant, l = 0, 1, 2, 3, …, w is the eigenmode frequency, and Ψ(r) has different forms in each of three layers in the waveguide:
ψ(r)=a1Il(pr)+a2Kl(pr)r<r1,
ψ(r)=bJl(hr)+cYl(hr)r1<r<r2,
ψ(r)=d1Il(qr)+d2Kl(qr)r>r2.
In Eqs. (3) to (5), p2 = β2-n1 2k0 2, h2 = n2 2k0 22, q2 = β2-n3 2k0 2, Il(x), Jl(x), Yl(x), and Kl(x) are the Modified Bessel function of the first kind, Bessel function of the first kind, Bessel functions of the second kind, and Modified Bessel function of the second kind, respectively, of order l, and a1, a2, b, c, d1, and d2 are arbitrary constants.

 figure: Fig. 1

Fig. 1 Structure and refractive index profile of a purely dielectric three-medium coaxial cylindrical waveguide

Download Full Size | PDF

In order to determine the constants a1, a2, b, c, d1, d2, we consider boundary conditions at r = 0 and r→∞. Fields have to be finite at r = 0 and r→∞. Therefore, a2 and d1 must be zero. Thus, the fields in the core medium (Region I), the middle medium (Region II), and the outside medium (Region III) are described by I, J + Y, K, respectively, and we call the wave I-(J + Y)-K profile. Equations (3-5) can now be written as

Ez={A1Il(pr)exp[i(wt+lφβz)]r<r1[B1Jl(hr)+C1Yl(hr)]exp[i(wt+lφβz)]r1<r<r2D1Kl(qr)exp[i(wt+lφβz)]r>r2
Hz={A2Il(pr)exp[i(wt+lφβz)]r<r1[B2Jl(hr)+C2Yl(hr)]exp[i(wt+lφβz)]r1<r<r2D2Kl(qr)exp[i(wt+lφβz)]r>r2
Here we have used a different set of notations for arbitrary constants.

Using the wave equations, we can obtain Er, Eφ, Hr, and Hφ. In the core area (r < r1), they are

Er=iβp2[A1pIl'(pr)+iwμlβrA2Il(pr)]exp[i(wt+lφβz)]
Eφ=iβp2[ilrA1Il(pr)wμβA2pIl'(pr)]exp[i(wt+lφβz)]
Hr=iβp2[A2pIl'(pr)iwε1lβrA1Il(pr)]exp[i(wt+lφβz)]
Hφ=iβp2[ilrA2Il(pr)+wε1βA1pIl'(pr)]exp[i(wt+lφβz)]

The expressions for Er, Eφ, Hr, and Hφ in the middle layer (r1<r <r2) are

Er=iβh2{h[B1Jl'(hr)+C1Yl'(hr)]+iwμlβr[B2Jl(hr)+C2Yl(hr)]}×exp[i(wt+lφβz)]
Eφ=iβh2{ilr[B1Jl(hr)+C1Yl(hr)]hwμβ[B2Jl'(hr)+C2Yl'(hr)]}×exp[i(wt+lφβz)]
Hr=iβh2{h[B2Jl'(hr)+C2Yl'(hr)]iwε2lβr[B1Jl(hr)+C1Yl(hr)]}×exp[i(wt+lφβz)]
Hφ=iβh2{ilr[B2Jl(hr)+C2Yl(hr)]+hwε2β[B1Jl'(hr)+C1Yl'(hr)]}×exp[i(wt+lφβz)]

In the outside layer (r>r2), they are

Er=iβq2[qD1Kl'(qr)+iwμlβrD2Kl(qr)]exp[i(wt+lφβz)]
Eφ=iβq2[ilrD1Kl(qr)wμβqD2Kl'(qr)]exp[i(wt+lφβz)]
Hr=iβq2[qD2Kl'(qr)iwε3lβrD1Kl(qr)]exp[i(wt+lφβz)]
Hφ=iβq2[ilrD2Kl(qr)+wε3βqD1Kl'(qr)]exp[i(wt+lφβz)]

In Eqs. (8) - (19), the prime symbol denotes the first derivative of the function, ε1 = n1 2, ε2 = n2 2, ε3 = n3 2, and µ is the permeability of the medium. All the eigenmodes propagating in the three-medium waveguide must satisfy the boundary conditions that Ez, Hz, Eφ, and Hφ should be continuous at the I/II boundary (r = r1) and II/III boundary (r = r2). This leads to the corresponding eight equations. The eight equations can be expressed by the following matrix form

[M11M18M21M81M88][A1A2B1C1B2C2D1D2]=[00000000]

Here, M is an 8 × 8 matrix and its non-zero elements are:

M11=M32=Il(pr1), M13=M35=Jl(hr1), M14=M36=Yl(hr1), M21=M42=ilp2r1Il(pr1), M22=wuβpIl'(pr1), M23=M45=ilh2r1Jl(hr1), M24=M46=ilh2r1Yl(hr1), M25=wuβhJl'(hr1), M26=wuβhYl'(hr1), M41=wε1βpIl'(pr1), M43=wε2βhJl'(hr1), M44=wε2βhYl'(hr1), M53=M75=Jl(hr2), M54=M76=Yl(hr2), M57=M78=Kl(qr2), M63=M85=ilh2r2Jl(hr2), M64=M86=ilh2r2Yl(hr2), M65=wuβhJl'(hr2), M66=wuβhYl'(hr2), M67=M88=ilq2r2Kl(qr2), M68=wuβqKl'(qr2), M83=wε2βhJl'(hr2), M84=wε2βhYl'(hr2), M87=wε3βqIl'(qr2).

In order to get non-trivial solution for coefficients Ai, Bi, Ci, Di (i = 1, 2) in Eq. (20), the determinant of the above 8 × 8 matrix must vanish. We will use this requirement to obtain mode conditions. To solve the mode conditions, we use the parameters V, η, θ, defined as V2 = k0 2 r2 2 (n2 2-n3 2), η2 = (n2 2- n1 2)/ (n2 2- n3 2) and θ = r1/ r2 [1,2]. Here V is equivalent to the normalized frequency in conventional optical fiber [14]. For a fixed operation wavelength, V depends on waveguide parameters r2, n2, and n3. θ is the ratio between r1 and r2. If θ = 0, we have a conventional two-medium step-index optical fiber. Letting the determinant of M be zero under fixed values of V, η, and θ, we can calculate different hr2 values, which correspond to different eigenmodes. Then we can calculate other characteristic constants of these modes, such as cut off frequency and normalized propagation constant. We use Matlab software in our calculations. It should be noted that Eq. (20) can be simplified analytically first and then solved numerically to obtain the similar results of mode conditions [15]. It is well known that, in a cylindrical waveguide, eigenmodes in general have non-vanishing Er, Eφ, Ez, Hr, Hφ, Hz components. The eigenvalues resulting from matrix equation (Eq. (20)) lead to the two classes of solutions corresponding to the conventionally designated EH or HE modes. When l = 0, HE and EH modes become TE and TM modes, respectively.

Figure 2 shows the relationship between normalized propagation constant β/k 0 and normalized frequency V with fixed waveguide parameters, θ = 0.729, n1 = 1.00, n2 = 3.48, and n3 = 1.48. With n1 = 1, we have a waveguide with a small hole in the core area. It appears from Fig. 2 that for V<2.5, only the fundamental HE11 mode can propagate, which is the single-mode waveguide condition. It should be noted that the cut off frequency of different mode depends on the ratio of r1 and r2, as well as n1, n2, and n3. This is different from two-medium step-index fiber, whose cut off frequency of different modes is decided by the core size and the refractive indices of the waveguide. In the following sections, we will use the HE11 mode as an example and analyze its fields and power characteristics.

 figure: Fig. 2

Fig. 2 Normalized propagation constant β/k0 as a function of V parameter for some lowest-order modes of purely dielectric three-medium coaxial cylindrical waveguide with θ = 0.2, n = 1, n = 3.48, n3 = 1.48 (n1, n2, n3 respectively represents refractive index in core, middle, outside medium).

Download Full Size | PDF

3. Field and Power Characteristics of HE11 Mode

In the calculation of fields and power, we can normalize all other fields to one non-zero amplitude (e.g., A1 in HE11 mode). After obtained β/k 0 of an eigenmode and set input signal, we can calculate normalized amplitudes of all fields. Then the Poynting vector and power can be numerically obtained.

For HE11 mode, we set A1 = 1. Then we solve for the values of A2, B1, C1, B2, C2, D1, and D2 of different fields using Eq. (20). After the field functions (Eqs. (6) to (19)) are obtained, the power can be calculated. In the cylindrical coordinate system, the time-averaged Poynting vector along the waveguide is expressed by

Sz=12Real[ErHφ*-EφHr*]

The amount of power in core (Pcore), middle layer (Pmid) and outside layer (Pout) are given by

Pcore=02π0r1Szrdrdφ
Pmid=02πr1r2Szrdrdφ
Pout=02πr2Szrdrdφ

We study the power characteristics in the core medium in two aspects, the power percentage and power distribution.

The magnitude of coefficients of the field components Er, Eφ, Ez, Hr, Hφ, and Hz in the core medium are presented in Fig. 3a to Fig. 3f with different n2 and other fixed waveguide parameters, θ = 0.729, n1 = 1, and n3 = 1.48. Again we consider a waveguide with a hole in the core area (n1 = 1). It should be noted that there is a π/2 phase difference between two sets of fields (Ez, Eφ, and Hr) and (Hz, Er, and Hφ) because the amplitude coefficients of Ez, Eφ, and Hr are real numbers and those of Hz, Er, and Hφ are imaginary numbers.

 figure: Fig. 3

Fig. 3 Field distribution characteristic in core medium under different n2 with fixed V = 3.8. θ = 0.512, n1 = 1, n3 = 1.48. (a) Ez, (b) Hz, (c) Er, (d) Eφ, (e) Hr, and (f) Hφ.

Download Full Size | PDF

Figure 4 shows power distribution in the core medium (a nanoscale hole) with the same parameters as in Fig. 3. It can be seen that there is larger power in the core area when n2 is larger. Figure 5 shows different power percentage of HE11 mode with different V and fixed values of θ, n1, n2 and n3. Compared to TE01 mode in Refs. 1-2, the power percentage of HE11 mode has similar behavior when V changes. It also shows that there is an optimal V for maximum P1. Here the optimal V is about 3.8, which corresponds to a maximum power percentage of 30% in core medium when θ = 0.729, n1 = 1, n2 = 3.48, and n3 = 1.48.

 figure: Fig. 4

Fig. 4 Power density in core medium under different n2 with fixed parameters V = 3.8, θ = 0.512, n1 = 1.00, and n3 = 1.48.

Download Full Size | PDF

 figure: Fig. 5

Fig. 5 Power percentage of HE11 mode under different V with parameters: θ = 0.729, n1 = 1.00, n2 = 3.48, n3 = 1.48.

Download Full Size | PDF

The power percentage in the core medium (nanoscale hole) varies with values of V, θ and η. Figure 6a and Fig. 6b respectively show power percentage in the core medium varying with different values of V, θ and η. We can see from Fig. 6a that there is an optimal V value which results in maximum power percentage in the core medium. This interesting effect can be explained by considering the relation between V and r2. With fixed θ value in Fig. 6a, a decrease in V corresponds to the decrease of r2, and hence r1. Decreasing in r1 causes the increase in power density, but decrease in total volume of core region. As a results, there is an optimal V for maximum power percentage in the core region, i.e., V (and, with fixed θ, hence r1) cannot be too large or too small for maximum power concentration. The optimal V value becomes larger when n2 changes from 3.48 to 1.75.

 figure: Fig. 6

Fig. 6 Power percentage in the core medium of HE11 Mode with different n2. (a) Power percentage versus V with fixed θ = 0.729. (b) Power percentage versus θ with fixed V = 3.8.

Download Full Size | PDF

Similarly, as we can see from Fig. 6b, there is an optimal θ value which can lead to maximum power percentage value in the core medium. Both Fig. 6a and Fig. 6b show that larger n2 leads to larger power percentage in the core medium.

Figure 7 shows the power distribution in all three media with fixed values of V and refractive indices when θ changes. It can be seen from Fig. 7a and Fig. 7e that the power density in the core medium nearly is double as that in the middle medium and the light is well confined in the core medium. From Figs. 7a to 7d, we can see that as θ becomes larger, the power density in core medium gradually approaches to that in the medium II and the difference in power density between the core medium and medium II is less significant. That is, the area of the large power intensity moves away from the center point of the circle. So the “needle beam” will disappear gradually when the θ value becomes larger. It should be noted that the power density in the outside medium is always small.

 figure: Fig. 7

Fig. 7 Power distribution of HE11 mode in three mediums with V = 3.8, n1 = 1.00 and n2 = 3.48, n3 = 1.48 when θ changes. (a). θ = 0.052. (b). θ = 0.152. (c). θ = 0.212. (d). θ = 0.532. (e). three dimensional map of (a).

Download Full Size | PDF

4. Discussions

We have presented typical values of fields and power of the eigenmodes in a three-medium purely dielectric coaxial cylindrical waveguide. From our numerical analyses, we can get the following general results.

Compare to two-medium step-index waveguide, mode conditions of our waveguide are determined not only by the refractive indices, but also by θ, the ratio of the core and the middle layer radii. It means that waveguide dispersion properties (Fig. 2) will change when either θ or refractive indices change, while in two-medium step index waveguide they are functions of refractive indices only.

Several parameters of the waveguide affect the power density and percentage of power distribution in three regions. For nanoscale power concentration, the most important parameter is the core size. For smaller core diameter, there is a higher power density in the core area, corresponding to a stronger “needle beam” effect. As shown in Fig. 7, the power density in the core medium can be nearly twice as much as that in the middle medium. However, it should be noted that the total amount of power concentration is not necessary higher for smaller core diameter. This is due to the fact that the core area gets smaller for smaller diameter.

Other waveguide parameters (V, θ, and refractive indices) have various degrees of effect on power percentage distributions in three media. Figure 6b shows that when V is fixed, Pcore is larger for larger θ up to certain value. Note that θ is determined by the diameters of core and middle layer. Therefore, larger θ corresponds to relatively larger core size. If θ is too large, it is no longer a nanoscale effect.

When θ is fixed, there is a best V value for the maximum power in the core medium (Fig. 5 and Fig. 6a). For all the cases we have studied, it is evident that larger refractive index in the middle medium (n2) leads to higher power percentage in the core medium. This can be explained based on the fact that the needle beam is an effect of evanescent wave at the boundary between core and middle layers [1,2].

It should be noted that core diameter r1, n2, V, and θ are all inter-related. Therefore it is very important to choose suitable parameters to confine more power in core medium for nanoscale beam propagation.

The above results are calculated for the fundamental mode HE11. For high power concentration in a small area, we have also examined power distribution of other modes. Table 1 lists power percentage in core medium and middle medium for different eigenmodes of the waveguide with V = 20, θ = 0.729, n1 = 1, n2 = 3.48, and n3 = 1.48. From Table 1, we can see that power percentage of TE and HE modes in core medium are larger than that of TM and EH modes. This is a typical result of boundary conditions of dielectric waveguides.

Tables Icon

Table 1. Power percentage in core (nanoscale hole) and middle layers of different modes of three dielectric medium cylindrical waveguide with V = 20, θ = 0.729, n1 = 1, n2 = 3.48, and n3 = 1.48

5. Conclusions

We have systematically analyzed the properties of the purely dielectric three-medium cylindrical waveguide, and presented general equations, mode conditions, and light propagation characteristics of waveguide modes. The results of the numerical analysis show that it is feasible to realize nanoscale light transmission in a three-medium dielectric waveguide. It is found that power in core area is higher if the refractive index difference between the core and the middle layer is higher. There is optimum value of normalized frequency for maximum power in core medium. Power density in the core (nanoscale hole) area gets larger for smaller radius of the core area and there is an optimal value of core radius for maximum power concentration in the core region. Waveguide and mode parameters are all inter-related. Therefore, it is very important to choose suitable waveguide parameters in order to confine significant power in core medium.

References and links

1. V. Bondarenko and Y. Zhao, “Needle beam”: Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide,” Appl. Phys. Lett. 89(14), 141103 (2006). [CrossRef]  

2. V. Bondarenko and Y. Zhao, “Addendum: The 'needle beam': Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide,” Appl. Phys. Lett. 91(8), 089903 (2007). [CrossRef]  

3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef]   [PubMed]  

4. R. Gordon, “Angle-dependent optical transmission through a narrow slit in a thick metal film,” Phys. Rev. B 75(19), 193401 (2007). [CrossRef]  

5. F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006). [CrossRef]  

6. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef]   [PubMed]  

7. K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, “Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics,” Opt. Express 14(1), 320–330 (2006). [CrossRef]   [PubMed]  

8. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003). [CrossRef]  

9. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]  

10. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef]   [PubMed]  

11. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef]   [PubMed]  

12. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef]   [PubMed]  

13. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef]   [PubMed]  

14. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York; Oxford, 1997).

15. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, “Optical-Potential for Atom Guidance in a Cylindrical-Core Hollow-Fiber,” Opt. Commun. 115(1-2), 57–64 (1995). [CrossRef]  

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Structure and refractive index profile of a purely dielectric three-medium coaxial cylindrical waveguide
Fig. 2
Fig. 2 Normalized propagation constant β/k0 as a function of V parameter for some lowest-order modes of purely dielectric three-medium coaxial cylindrical waveguide with θ = 0.2, n = 1, n = 3.48, n3 = 1.48 (n1, n2, n3 respectively represents refractive index in core, middle, outside medium).
Fig. 3
Fig. 3 Field distribution characteristic in core medium under different n2 with fixed V = 3.8. θ = 0.512, n1 = 1, n3 = 1.48. (a) Ez, (b) Hz, (c) Er, (d) Eφ, (e) Hr, and (f) Hφ.
Fig. 4
Fig. 4 Power density in core medium under different n2 with fixed parameters V = 3.8, θ = 0.512, n1 = 1.00, and n3 = 1.48.
Fig. 5
Fig. 5 Power percentage of HE11 mode under different V with parameters: θ = 0.729, n1 = 1.00, n2 = 3.48, n3 = 1.48.
Fig. 6
Fig. 6 Power percentage in the core medium of HE11 Mode with different n2. (a) Power percentage versus V with fixed θ = 0.729. (b) Power percentage versus θ with fixed V = 3.8.
Fig. 7
Fig. 7 Power distribution of HE11 mode in three mediums with V = 3.8, n1 = 1.00 and n2 = 3.48, n3 = 1.48 when θ changes. (a). θ = 0.052. (b). θ = 0.152. (c). θ = 0.212. (d). θ = 0.532. (e). three dimensional map of (a).

Tables (1)

Tables Icon

Table 1 Power percentage in core (nanoscale hole) and middle layers of different modes of three dielectric medium cylindrical waveguide with V = 20, θ = 0.729, n1 = 1, n2 = 3.48, and n3 = 1.48

Equations (48)

Equations on this page are rendered with MathJax. Learn more.

( 2 + k 2 ) { E z H z } = 0
{ E z H z } = ψ (r) exp [ i ( w t + l φ β z ) ]
ψ ( r ) = a 1 I l ( p r ) + a 2 K l ( p r ) r < r 1
ψ ( r ) = b J l ( h r ) + c Y l ( h r ) r 1 < r < r 2
ψ ( r ) = d 1 I l ( q r ) + d 2 K l ( q r ) r > r 2
E z = { A 1 I l ( p r ) exp [ i ( w t + l φ β z ) ] r < r 1 [ B 1 J l ( h r ) + C 1 Y l ( h r ) ] exp [ i ( w t + l φ β z ) ] r 1 < r < r 2 D 1 K l ( q r ) exp [ i ( w t + l φ β z ) ] r > r 2
H z = { A 2 I l ( p r ) exp [ i ( w t + l φ β z ) ] r < r 1 [ B 2 J l ( h r ) + C 2 Y l ( h r ) ] exp [ i ( w t + l φ β z ) ] r 1 < r < r 2 D 2 K l ( q r ) exp [ i ( w t + l φ β z ) ] r > r 2
E r = i β p 2 [ A 1 p I l ' ( p r ) + i w μ l β r A 2 I l ( p r ) ] exp [ i ( w t + l φ β z ) ]
E φ = i β p 2 [ i l r A 1 I l ( p r ) w μ β A 2 p I l ' ( p r ) ] exp [ i ( w t + l φ β z ) ]
H r = i β p 2 [ A 2 p I l ' ( p r ) i w ε 1 l β r A 1 I l ( p r ) ] exp [ i ( w t + l φ β z ) ]
H φ = i β p 2 [ i l r A 2 I l ( p r ) + w ε 1 β A 1 p I l ' ( p r ) ] exp [ i ( w t + l φ β z ) ]
E r = i β h 2 { h [ B 1 J l ' ( h r ) + C 1 Y l ' ( h r ) ] + i w μ l β r [ B 2 J l ( h r ) + C 2 Y l ( h r ) ] } × exp [ i ( w t + l φ β z ) ]
E φ = i β h 2 { i l r [ B 1 J l ( h r ) + C 1 Y l ( h r ) ] h w μ β [ B 2 J l ' ( h r ) + C 2 Y l ' ( h r ) ] } × exp [ i ( w t + l φ β z ) ]
H r = i β h 2 { h [ B 2 J l ' ( h r ) + C 2 Y l ' ( h r ) ] i w ε 2 l β r [ B 1 J l ( h r ) + C 1 Y l ( h r ) ] } × exp [ i ( w t + l φ β z ) ]
H φ = i β h 2 { i l r [ B 2 J l ( h r ) + C 2 Y l ( h r ) ] + h w ε 2 β [ B 1 J l ' ( h r ) + C 1 Y l ' ( h r ) ] } × exp [ i ( w t + l φ β z ) ]
E r = i β q 2 [ q D 1 K l ' ( q r ) + i w μ l β r D 2 K l ( q r ) ] exp [ i ( w t + l φ β z ) ]
E φ = i β q 2 [ i l r D 1 K l ( q r ) w μ β q D 2 K l ' ( q r ) ] exp [ i ( w t + l φ β z ) ]
H r = i β q 2 [ q D 2 K l ' ( q r ) i w ε 3 l β r D 1 K l ( q r ) ] exp [ i ( w t + l φ β z ) ]
H φ = i β q 2 [ i l r D 2 K l ( q r ) + w ε 3 β q D 1 K l ' ( q r ) ] exp [ i ( w t + l φ β z ) ]
[ M 11 M 18 M 21 M 81 M 88 ] [ A 1 A 2 B 1 C 1 B 2 C 2 D 1 D 2 ] = [ 0 0 0 0 0 0 0 0 ]
M 11 = M 32 = I l ( p r 1 )
M 13 = M 35 = J l ( h r 1 )
M 14 = M 36 = Y l ( h r 1 )
M 21 = M 42 = i l p 2 r 1 I l ( p r 1 )
M 22 = w u β p I l ' ( p r 1 )
M 23 = M 45 = i l h 2 r 1 J l ( h r 1 )
M 24 = M 46 = i l h 2 r 1 Y l ( h r 1 )
M 25 = w u β h J l ' ( h r 1 )
M 26 = w u β h Y l ' ( h r 1 )
M 41 = w ε 1 β p I l ' ( p r 1 )
M 43 = w ε 2 β h J l ' ( h r 1 )
M 44 = w ε 2 β h Y l ' ( h r 1 )
M 53 = M 75 = J l ( h r 2 )
M 54 = M 76 = Y l ( h r 2 )
M 57 = M 78 = K l ( q r 2 )
M 63 = M 85 = i l h 2 r 2 J l ( h r 2 )
M 64 = M 86 = i l h 2 r 2 Y l ( h r 2 )
M 65 = w u β h J l ' ( h r 2 )
M 66 = w u β h Y l ' ( h r 2 )
M 67 = M 88 = i l q 2 r 2 K l ( q r 2 )
M 68 = w u β q K l ' ( q r 2 )
M 83 = w ε 2 β h J l ' ( h r 2 )
M 84 = w ε 2 β h Y l ' ( h r 2 )
M 87 = w ε 3 β q I l ' ( q r 2 ) .
S z = 1 2 R e a l [ E r H φ * - E φ H r * ]
P c o r e = 0 2 π 0 r 1 S z r d r d φ
P m i d = 0 2 π r 1 r 2 S z r d r d φ
P o u t = 0 2 π r 2 S z r d r d φ
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.