Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Average gradient of Zernike polynomials over polygons

Open Access Open Access

Abstract

Wavefront estimation from slope sensor data is often achieved by fitting measured slopes with Zernike polynomial derivatives averaged over the sampling subapertures. Here we discuss how the calculation of these average derivatives can be reduced to one-dimensional integrals of the Zernike polynomials, rather than their derivatives, along the perimeter of each subaperture. We then use this result to derive closed-form expressions for the average Zernike polynomial derivatives over polygonal areas, only requiring evaluation of polynomials at the polygon vertices. Finally, these expressions are applied to simulated Shack-Hartmann wavefront sensors with 7 and 23 fully illuminated lenslets across a circular pupil, with their accuracy and calculation time compared against commonly used integration methods.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Slope wavefront sensors, such as the Shack-Hartmann [16], are widely used in medical, scientific, and industrial applications, including autorefraction and clinical aberrometry [713], refractive surgery [1423], adaptive optics retinal imaging [2429], visual psychophysics [3034], vision simulators [3538], microscopy [3941], astronomy [4244], line-of-sight communications [45], high power lasers [4649] and metrology [50]. These sensors measure wavefront slopes averaged over a set of non-overlapping discrete regions or subapertures. The wavefront is then estimated either by solving a set of discrete difference equations (zonal reconstruction) [5156] or by fitting the data to a linear combination of basis functions (modal reconstruction) [5466]. The latter, often used due to its robustness to noise [54,66], requires the estimation of average slopes of the basis functions over the sampling subapertures, which is the focus of this work. The Zernike polynomials are the most commonly used basis functions due to their orthogonality over the unit circle which, by design, makes them convenient to describe rotationally symmetric optical systems [6571]. When this approach is pursued, the fidelity with which a wavefront derived from slope sensor data can be described depends on the number of samples [54], the number of Zernike polynomials [60,72], and the errors in the calculation of their average slopes [7378]. Here we derive formulae to evaluate the average Zernike gradients over polygonal subapertures, such as those found in the lenslet arrays of Shack-Hartmann wavefront sensors (SHWSs), which are typically square or hexagonal.

This paper is structured as follows. First, we show that the double integration needed to estimate the average Zernike slope over a subaperture can be reduced to a single integral of the Zernike itself along the subaperture perimeter. Then, a Cartesian expression for Zernike polynomials [70,71], modified from that by Carpio and Malacara [79], is integrated along line segments to derive a closed-form expression for the average slopes over polygonal areas. Finally, and as a practical example, we use these formulae in a simulated SHWS with square lenslets [8,26,29,39,44,47,75]. The computing time and accuracy of the derived formulae are compared to the following alternative methods. First, the average Zernike slope over the entire aperture is approximated as the value at its center [7378]. Second, the averaging of a discrete number of Zernike slope samples spread over the subaperture [73,74]. Then, we use two-dimensional numerical integration of the Zernike slope over the subaperture areas [39,75,77], the one-dimensional numerical integration of the Zernike polynomials along the perimeter of the subapertures, and symbolic integration of Zernike polynomials along the perimeter of the subapertures. Finally, we show that the expressions derived here provide fastest calculation time and highest accuracy.

2. Average gradient of a two-dimensional function

The average slope of a wavefront $W$ along the x-direction over a subaperture $\Omega $, such as that of a lenslet in a SHWS, is defined as,

$${\left\langle {\frac{{\partial W(x,y)}}{{\partial x}}} \right\rangle _\Omega } = {{\iint\limits_\Omega {\frac{{\partial W(x,y)}}{{\partial x}}\textrm{d}x\textrm{d}y} } \mathord{\left/ {\vphantom {{\iint\limits_\Omega {\frac{{\partial W(x,y)}}{{\partial x}}\textrm{d}x\textrm{d}y} } {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}} \right. } {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}. $$
When the area is convex and the function is well-behaved, the gradient theorem, a generalization of the fundamental theorem of calculus for line integrals (see page 191 of [80]), can be used to reduce the calculation to a difference between wavefront evaluated along the “left” and “right” portions of the perimeter ($\wp {}_L$ and ${\wp _R}$ respectively, in Fig. 1), starting at the point with the lowest y-value and ending at the point with the highest y-value,
$${\left\langle {\frac{{\partial W(x,y)}}{{\partial x}}} \right\rangle _\Omega } = {{\left[ {\int\limits_B^A {W({{\wp_R}(y ),y} )\textrm{d}y} - \int\limits_B^A {W({{\wp_L}(y ),y} )\textrm{d}y} } \right]} \mathord{\left/ {\vphantom {{\left[ {\int\limits_B^A {W({{\wp_R}(y ),y} )\textrm{d}y} - \int\limits_B^A {W({{\wp_L}(y ),y} )\textrm{d}y} } \right]} {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}} \right. } {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}.$$

 figure: Fig. 1.

Fig. 1. Separation of the “left” and “right’ perimeters of a convex subaperture region Ω used for calculating the average wavefront slope along the x-axis.

Download Full Size | PDF

Reversing the integration limits of the “left” perimeter (lower x-coordinate) makes the numerator of the average slope calculation a single counterclockwise integral along the entire perimeter $\wp$ (see Fig. 1),

$${\left\langle {\frac{{\partial W(x,y)}}{{\partial x}}} \right\rangle _\Omega } = {{\int\limits_\wp {W({{x_{\textrm{perimeter}}}(y ),y} )\textrm{d}y} } \mathord{\left/ {\vphantom {{\int\limits_\wp {W({{x_{\textrm{perimeter}}}(y ),y} )\textrm{d}y} } {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}} \right. } {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}$$

This reasoning can be extended to non-convex areas, by splitting $\Omega $ into convex sub-areas and observing that the integrals along shared perimeter segments, as depicted in Fig. 2, cancel out due to the opposing integration directions. Therefore, only the counterclockwise integral along the perimeter is needed to calculate the average of the x-derivative over an arbitrary connected region with a continuous perimeter. Importantly, when calculating the average of the y-derivative, the integral in the numerator must be performed clockwise.

 figure: Fig. 2.

Fig. 2. Geometry used for calculating the average x-derivative of a function over a non-convex region with continuous perimeter by dividing it into convex regions.

Download Full Size | PDF

3. Average gradient over a polygonal area

The average x-derivative of W over a polygonal subaperture defined by N vertices sorted counterclockwise, can be calculated using Eq. (3) as

$${\left\langle {\frac{{\partial W(x,y)}}{{\partial x}}} \right\rangle _\Omega } = {{\left[ {\sum\limits_{q = 1}^N {\int\limits_{{y_q}}^{{y_{q + 1}}} {W({a_{q,q + 1}^xy + b_{q,q + 1}^x,y} )\textrm{d}y} } } \right]} \mathord{\left/ {\vphantom {{\left[ {\sum\limits_{q = 1}^N {\int\limits_{{y_q}}^{{y_{q + 1}}} {W({a_{q,q + 1}^xy + b_{q,q + 1}^x,y} )\textrm{d}y} } } \right]} {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}} \right. } {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }},$$
where q+1 cycles back to 1. Similarly, with the N vertices sorted clockwise, the y-derivatives can be calculated as
$${\left\langle {\frac{{\partial W(x,y)}}{{\partial y}}} \right\rangle _\Omega } = {{\left[ {\sum\limits_{q = 1}^N {\int\limits_{{x_q}}^{{x_{q + 1}}} {W({x,a_{q,q + 1}^yx + b_{q,q + 1}^y} )\textrm{d}x} } } \right]} \mathord{\left/ {\vphantom {{\left[ {\sum\limits_{q = 1}^N {\int\limits_{{x_q}}^{{x_{q + 1}}} {W({x,a_{q,q + 1}^yx + b_{q,q + 1}^y} )\textrm{d}x} } } \right]} {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}} \right. } {\iint\limits_\Omega {\textrm{d}x\textrm{d}y} }}.$$
In these formulae, $a_{q,q + 1}^x$, $b_{q,q + 1}^x$, $a_{q,q + 1}^y$ and $b_{q,q + 1}^y$ are the coefficients of the equation of a line passing through the adjacent polygon vertices q and q+1,
$$x = a_{q,q + 1}^xy + b_{q,q + 1}^x,$$
with $a_{q,q + 1}^x = {{({{x_{q + 1}} - {x_q}} )} \mathord{\left/ {\vphantom {{({{x_{q + 1}} - {x_q}} )} {({{y_{q + 1}} - {y_q}} )}}} \right.} {({{y_{q + 1}} - {y_q}} )}}$ and $b_{q,q + 1}^x = {{{x_q} - {y_q}({{x_{q + 1}} - {x_q}} )} \mathord{\left/ {\vphantom {{{x_q} - {y_q}({{x_{q + 1}} - {x_q}} )} {({{y_{q + 1}} - {y_q}} )}}} \right.} {({{y_{q + 1}} - {y_q}} )}}$. Similarly, for the y-derivative of W, we have
$$y = a_{q,q + 1}^yx + b_{q,q + 1}^y,$$
with $a_{q,q + 1}^y = {{({{y_{q + 1}} - {y_q}} )} \mathord{\left/ {\vphantom {{({{y_{q + 1}} - {y_q}} )} {({{x_{q + 1}} - {x_q}} )}}} \right.} {({{x_{q + 1}} - {x_q}} )}}$ and $b_{q,q + 1}^y = {{{y_q} - {x_q}({{y_{q + 1}} - {y_q}} )} \mathord{\left/ {\vphantom {{{y_q} - {x_q}({{y_{q + 1}} - {y_q}} )} {({{x_{q + 1}} - {x_q}} )}}} \right.} {({{x_{q + 1}} - {x_q}} )}}$. These, with an explicit formula for the area of a polygon in the denominator (see page 193 of Ref. [81]), allow us to write the average x-derivative of W over the polygonal subaperture in terms of the vertices sorted counterclockwise as,
$${\left\langle {\frac{{\partial W(x,y)}}{{\partial x}}} \right\rangle _\Omega } = {{2\sum\limits_{q = 1}^N {\int\limits_{{y_q}}^{{y_{q + 1}}} {W({a_{q,q + 1}^xy + b_{q,q + 1}^x,y} )\textrm{d}y} } } \mathord{\left/ {\vphantom {{2\sum\limits_{q = 1}^N {\int\limits_{{y_q}}^{{y_{q + 1}}} {W({a_{q,q + 1}^xy + b_{q,q + 1}^x,y} )\textrm{d}y} } } {\sum\limits_{q = 1}^N {({{x_q}{y_{q + 1}} - {y_q}{x_{q + 1}}} )} }}} \right. } {\sum\limits_{q = 1}^N {({{x_q}{y_{q + 1}} - {y_q}{x_{q + 1}}} )} }},$$
noting that for horizontal polygon sides parallel to the x-axis, ${y_q} = {y_{q + 1}}$ and, thus, the corresponding terms in the numerator are identically zero. Similarly, for the average of the y-derivative we have,
$${\left\langle {\frac{{\partial W(x,y)}}{{\partial y}}} \right\rangle _\Omega } = {{2\sum\limits_{q = 1}^N {\int\limits_{{x_q}}^{{x_{q + 1}}} {W({x,a_{q,q + 1}^yx + b_{q,q + 1}^y} )\textrm{d}x} } } \mathord{\left/ {\vphantom {{2\sum\limits_{q = 1}^N {\int\limits_{{x_q}}^{{x_{q + 1}}} {W({x,a_{q,q + 1}^yx + b_{q,q + 1}^y} )\textrm{d}x} } } {\sum\limits_{q = 1}^N {({{x_q}{y_{q + 1}} - {y_q}{x_{q + 1}}} )} }}} \right. } {\sum\limits_{q = 1}^N {({{x_q}{y_{q + 1}} - {y_q}{x_{q + 1}}} )} }},$$
with the vertical segments parallel to the y-axis not contributing to the numerator and remembering that here the vertices are sorted clockwise.

4. Zernike polynomials in Cartesian coordinates

The Zernike polynomials are defined as the product of a radial coordinate polynomial of order n, and either a sine or a cosine azimuthal function of order m,

$$Z_n^m({\rho ,\theta } )= N_n^mR_n^{|m |}(\rho )\left\{ {\begin{array}{c} {\cos ({|m |\theta } ),\,\,\,\,\textrm{for }m \ge 0}\\ {\sin ({|m |\theta } ),\,\,\,\,\textrm{for }m < 0} \end{array}} \right.$$
with $|m |\le n$, $n - |m |$ an even number and
$$R_n^{|m |}(\rho )= \sum\limits_{s = 0}^{{{({n - |m |} )} \mathord{\left/ {\vphantom {{({n - |m |} )} 2}} \right.} 2}} {\frac{{{{({ - 1} )}^s}({n - s} )!}}{{s![{{{({n + |m |} )} \mathord{\left/ {\vphantom {{({n + |m |} )} 2}} \right.} 2} - s} ]![{{{({n - |m |} )} \mathord{\left/ {\vphantom {{({n - |m |} )} 2}} \right.} 2} - s} ]!}}} {\rho ^{n - 2s}}. $$
When the normalization factor $N_n^m$ is ${[{2{{({n + 1} )} \mathord{\left/ {\vphantom {{({n + 1} )} {({1 + {{\delta }_{m0}}} )}}} \right.} {({1 + {{\delta }_{m0}}} )}}} ]^{{1 \mathord{\left/ {\vphantom {1 2}} \right.} 2}}}$ with ${{\delta }_{m0}}$ being the Kronecker delta function, the polynomials have unit norm over the unit circle [68]. From this definition, closed-form expressions in Cartesian coordinates can be obtained, as demonstrated by Carpio and Malacara [79]. We now reproduce their derivation, using a right-handed Cartesian coordinate system with the x-axis having zero-azimuth and with increasing azimuth toward the positive y-axis.

Let us start by making changes of variables within the summation $n^{\prime} = {{({n - |m |} )} \mathord{\left/ {\vphantom {{({n - |m |} )} 2}} \right.} 2}$ and $k = n^{\prime} - s$, to rewrite Eq. (10) using combinations (or binomial coefficients) as,

$$Z_n^m({\rho ,\theta } )= N_n^m\sum\limits_{k = 0}^{n^{\prime}} {{{({ - 1} )}^{n^{\prime} - k}}\left( {\begin{array}{c} {n^{\prime}}\\ k \end{array}} \right)\left( {\begin{array}{c} {n^{\prime} + |m |+ k}\\ {n^{\prime}} \end{array}} \right)} \,{\rho ^{2k + |m |}}\left\{ {\begin{array}{c} {\cos ({|m |\theta } ),\,\,\,\,\textrm{for }m \ge 0}\\ {\sin ({|m |\theta } ),\,\,\,\,\textrm{for }m < 0} \end{array}} \right.$$
Now, if we think of the polynomials as defined over the complex plane, with x and $y$ being the real and imaginary parts of a complex number $z$ (i.e., $z = x + iy = \rho \,{\textrm{e}^{i\theta }}$), and using de Moivre’s formula for calculating the powers of complex numbers, we have
$$Z_n^m({x,y} )= N_n^m\sum\limits_{k = 0}^{n^{\prime}} {{{({ - 1} )}^{n^{\prime} - k}}\left( {\begin{array}{c} {n^{\prime}}\\ k \end{array}} \right)\left( {\begin{array}{c} {n^{\prime} + |m |+ k}\\ {n^{\prime}} \end{array}} \right)} {({{x^2} + {y^2}} )^k}\left\{ {\begin{array}{c} {{\mathop{\rm Re}\nolimits} \{{{{({x + iy} )}^{|m |}}} \},\,\,\,\,\textrm{for }m \ge 0}\\ {{\mathop{\rm Im}\nolimits} \{{{{({x + iy} )}^{|m |}}} \},\,\,\,\,\textrm{for }m < 0} \end{array}} \right.$$
If we now note that ${({{x^2} + {y^2}} )^k}{({x + iy} )^{|m |}} = {({x - iy} )^k}{({x + iy} )^{k + |m |}}$ and using the binomial theorem on the right-hand-side of this equation, we get,
$${({{x^2} + {y^2}} )^k}{({x + iy} )^{|m |}} = \left[ {\sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right){x^{k - v}}{{({ - 1} )}^v}{i^v}{y^v}} } \right]\left[ {\sum\limits_{u = 0}^{k + |m |} {\left( {\begin{array}{c} {k + |m |}\\ u \end{array}} \right){x^{k + |m |- u}}{i^u}{y^u}} } \right],$$
which after consolidating the monomials becomes,
$${({{x^2} + {y^2}} )^k}{({x + iy} )^{|m |}} = \sum\limits_{v = 0}^k {{{({ - 1} )}^v}\left( {\begin{array}{c} k\\ v \end{array}} \right)\sum\limits_{u = 0}^{k + |{m{\kern 1pt} } |} {\left( {\begin{array}{c} {k + |m |}\\ u \end{array}} \right){i^{u + v}}{x^{2k + |{m{\kern 1pt} } |- u - v}}{y^{u + v}}} }. $$
Let us now make the change of indices $p^{\prime} = u + v$ (or equivalently, $u = p^{\prime} - v \ge 0$), to facilitate the separation of the real and imaginary parts,
$${({{x^2} + {y^2}} )^k}{({x + iy} )^{|m |}} = \sum\limits_{v = 0}^k {{{({ - 1} )}^v}\left( {\begin{array}{c} k\\ v \end{array}} \right)\sum\limits_{p^{\prime} = v}^{k + |{m{\kern 1pt} } |+ v} {\left( {\begin{array}{c} {k + |m |}\\ {p^{\prime} - v} \end{array}} \right){i^{p^{\prime}}}{x^{2k + |{m{\kern 1pt} } |- p^{\prime}}}{y^{p^{\prime}}}} }. $$
We can now separate the real and imaginary parts by retaining even and odd powers of the imaginary number, $i$ respectively,
$${\mathop{\rm Re}\nolimits} \{{{{({{x^2} + {y^2}} )}^k}{{({x + iy} )}^{|m |}}} \}= \sum\limits_{v = 0}^k {{{({ - 1} )}^v}\left( {\begin{array}{c} k\\ v \end{array}} \right)\sum\limits_{\,\,\,\,\,\,\,\,\,p^{\prime}\,\,\textrm{even}\atop \scriptstyle v \le p^{\prime} \le k + |m |+ v}^{} {\left( {\begin{array}{c} {k + |m |}\\ {p^{\prime} - v} \end{array}} \right){i^{p^{\prime}}}{x^{2k + |m |- p^{\prime}}}{y^{p^{\prime}}}} }, $$
$${\mathop{\rm Im}\nolimits} \{{{{({{x^2} + {y^2}} )}^k}{{({x + iy} )}^{|m |}}} \}= \sum\limits_{v = 0}^k {{{({ - 1} )}^v}\left( {\begin{array}{c} k\\ v \end{array}} \right)\sum\limits_{\,\,\,\,\,\,\,\,\,p^{\prime}\,\,\textrm{odd} \atop \scriptstyle v \le p^{\prime} \le k + |m |+ v}^{} {\left( {\begin{array}{c} {k + |m |}\\ {p^{\prime} - v} \end{array}} \right){i^{p^{\prime} - 1}}{x^{2k + |m |- p^{\prime}}}{y^{p^{\prime}}}}} . $$
Therefore, Zernike polynomials in Eq. (13) with non-negative angular order $({m \ge 0} )$ after making a final change of indices $p^{\prime} = 2p$ can be written as
$$Z_n^{m \ge 0}(x,y) = N_n^m\sum\limits_{k = 0}^{n^{\prime}} {\left( {\begin{array}{c} {n^{\prime}}\\ k \end{array}} \right)\left( {\begin{array}{c} {n^{\prime} + |m |+ k}\\ {n^{\prime}} \end{array}} \right)} \sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)\sum\limits_{p = \lceil{v/2} \rceil }^{\lfloor{({k + |m |+ v} )/2} \rfloor } {{{({ - 1} )}^{n^{\prime} - k + v + p}}} \left( {\begin{array}{c} {k + |m |}\\ {2p - v} \end{array}} \right){x^{2k + |m |- 2p}}{y^{2p}}}, $$
where $\lceil{} \rceil $ denotes the ceiling function, $\lfloor{} \rfloor $ the floor function, and $p$ is a non-negative integer. Similarly, the change of indices $p^{\prime} = 2p - 1$ allows us to write the polynomials with negative azimuthal order as,
$$Z_n^{m < 0}(x,y) = N_n^m\sum\limits_{k = 0}^{n^{\prime}} {\left( {\begin{array}{c} {n^{\prime}}\\ k \end{array}} \right)\left( {\begin{array}{c} {n^{\prime} + |m |+ k}\\ {n^{\prime}} \end{array}} \right)} \sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)\sum\limits_{p = \lceil{({v + 1} )/2} \rceil }^{\lfloor{({k + |m |+ v + 1} )/2} \rfloor } {{{({ - 1} )}^{n^{\prime} - k + v + p - 1}}} } \left( {\begin{array}{c} {k + |m |}\\ {2p - 1 - v} \end{array}} \right){x^{2k + |m |- 2p + 1}}{y^{2p - 1}}$$
Here, we did not use the associative property to facilitate efficient computational implementation.

5. Average Zernike polynomial gradients over a polygonal area

Now that we have explicit formulae for the Zernike polynomials in Cartesian coordinates, we can calculate their average slopes over polygonal areas by first substituting the two-point form of the line in Eq. (6) into Eqs. (19) and (20),

$$\begin{array}{l} Z_n^{m \ge 0}(a_{q,q + 1}^xy + b_{q,q + 1}^x,y) = N_n^m\sum\limits_{k = 0}^{n'} {\left( {\begin{array}{c} {n'}\\ k \end{array}} \right)\left( {\begin{array}{c} {n' + \left| m \right| + k}\\ {n'} \end{array}} \right)} \,\sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)} \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sum\limits_{p = \left\lceil {v/2} \right\rceil }^{\left\lfloor {\left( {k + \left| m \right| + v} \right)/2} \right\rfloor } {{{\left( { - 1} \right)}^{n' - k + v + p}}} \left( {\begin{array}{c} {k + \left| m \right|}\\ {2p - v} \end{array}} \right){\left( {a_{q,q + 1}^xy + b_{q,q + 1}^x} \right)^{2k + \left| m \right| - 2p}}{y^{2p}}, \end{array}$$
and
$$\begin{array}{l} Z_n^{m < 0}(a_{q,q + 1}^xy + b_{q,q + 1}^x,y) = N_n^m\sum\limits_{k = 0}^{n^{\prime}} {\left( {\begin{array}{c} {n^{\prime}}\\ k \end{array}} \right)\left( {\begin{array}{c} {n^{\prime} + |m |+ k}\\ {n^{\prime}} \end{array}} \right)} \sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)} \sum\limits_{p = \lceil{({v + 1} )/2} \rceil }^{\lfloor{({k + |m |+ v + 1} )/2} \rfloor } {{{({ - 1} )}^{n^{\prime} - k + v + p - 1}}} \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\begin{array}{c} {k + |m |}\\ {2p - 1 - v} \end{array}} \right){({a_{q,q + 1}^xy + b_{q,q + 1}^x} )^{2k + |m |- 2p + 1}}{y^{2p - 1}} \end{array}. $$
Using the binomial theorem, we get,
$$\begin{array}{l} Z_n^{m \ge 0}(a_{q,q + 1}^{x}y + b_{q,q + 1}^x,y) = N_n^m\sum\limits_{k = 0}^{n'} {\left( {\begin{array}{c} {n'}\\ k \end{array}} \right)\left( {\begin{array}{c} {n' + \left| m \right| + k}\\ {n'} \end{array}} \right)} \,\sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)} \,\sum\limits_{p = \left\lceil {v/2} \right\rceil }^{\left\lfloor {\left( {k + \left| m \right| + v} \right)/2} \right\rfloor } {{{\left( { - 1} \right)}^{n' - k + v + p}}} \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\begin{array}{c} {k + \left| m \right|}\\ {2p - v} \end{array}} \right)\sum\limits_{t = 0}^{2k + \left| m \right| - 2p} {\left( {\begin{array}{c} {2k + \left| m \right| - 2p}\\ t \end{array}} \right)} a_{q,q + 1}^{x}{}^{2k + \left| m \right| - 2p - t}b_{q,q + 1}^{x}{}^{t}y^{2k + \left| m \right| - t} \end{array},$$
and
$$\begin{array}{l} Z_n^{m < 0}(a_{q,q + 1}^xy + b_{q,q + 1}^x,y) = N_n^m\sum\limits_{k = 0}^{n'} {\left( {\begin{array}{c} {n'}\\ k \end{array}} \right)\left( {\begin{array}{c} {n' + \left| m \right| + k}\\ {n'} \end{array}} \right)} \,\sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)} \,\sum\limits_{p = \left\lceil {\left( {v + 1} \right)/2} \right\rceil }^{\left\lfloor {\left( {k + \left| m \right| + v + 1} \right)/2} \right\rfloor } {{{\left( { - 1} \right)}^{n' - k + v + p - 1}}} \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\begin{array}{c} {k + \left| m \right|}\\ {2p - 1 - v} \end{array}} \right)\sum\limits_{t = 0}^{2k + \left| m \right| - 2p + 1} {\left( {\begin{array}{c} {2k + \left| m \right| - 2p + 1}\\ t \end{array}} \right)} a_{q,q + 1}^{x}{}^{2k + \left| m \right| - 2p + 1 - t}b_{q,q + 1}^{x}{}^{t}y^{2k + \left| m \right| - t}. \end{array}.$$
We can now perform the y-integration along an edge of the polygon, getting,
$$\begin{array}{l} \int\limits_{{y_q}}^{{y_{q + 1}}} {Z_n^{m \ge 0}(a_{q,q + 1}^xy + b_{q,q + 1}^x,y)\textrm{d}y} = \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,N_n^m\sum\limits_{k = 0}^{n'} {\left( {\begin{array}{c} {n'}\\ k \end{array}} \right)\left( {\begin{array}{c} {n' + \left| m \right| + k}\\ {n'} \end{array}} \right)} \,\sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)} \,\sum\limits_{p = \left\lceil {v/2} \right\rceil }^{\left\lfloor {\left( {k + \left| m \right| + v} \right)/2} \right\rfloor } {{{\left( { - 1} \right)}^{n' - k + v + p}}} \left( {\begin{array}{c} {k + \left| m \right|}\\ {2p - v} \end{array}} \right) \times \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\sum\limits_{t = 0}^{2k + \left| m \right| - 2p} {\left( {\begin{array}{c} {2k + \left| m \right| - 2p}\\ t \end{array}} \right)} a_{q,q + 1}^{x}{}^{2k + \left| m \right| - 2p - t}b_{q,q + 1}^{x}{}^{t}\left( {\frac{{{y_{q + 1}}^{2k + \left| m \right| - t + 1} - {y_q}^{2k + \left| m \right| - t + 1}}}{{2k + \left| m \right| - t + 1}}} \right) \end{array},$$
and
$$\begin{array}{l} \int\limits_{{y_q}}^{{y_{q + 1}}} {Z_n^{m < 0}(a_{q,q + 1}^xy + b_{q,q + 1}^x,y)\textrm{d}y} = \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,N_n^m\sum\limits_{k = 0}^{n^{\prime}} {\left( {\begin{array}{c} {n^{\prime}}\\ k \end{array}} \right)\left( {\begin{array}{c} {n^{\prime} + |m |+ k}\\ {n^{\prime}} \end{array}} \right)\,} \sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)} \,\sum\limits_{p = \lceil{({v + 1} )/2} \rceil }^{\lfloor{({k + |m |+ v + 1} )/2} \rfloor } {{{({ - 1} )}^{n^{\prime} - k + v + p - 1}}} \left( {\begin{array}{c} {k + |m |}\\ {2p - 1 - v} \end{array}} \right)[{ \cdot{\cdot} \cdot } \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. {\sum\limits_{t = 0}^{2k + |m |- 2p + 1} {\left( {\begin{array}{c} {2k + |m |- 2p + 1}\\ t \end{array}} \right)} a{{_{q,q + 1}^{x}}^{2k + |m |- 2p + 1 - t}}b{{_{q,q + 1}^{x}}^t}\left( {\frac{{{y_{q + 1}}^{2k + |m |- t + 1} - {y_q}^{2k + |m |- t + 1}}}{{2k + |m |- t + 1}}} \right)} \right] \end{array}. $$
Similarly, for the average along the y-axis, the integral along an edge of the polygon is
$$\begin{array}{l} \int\limits_{{x_q}}^{{x_{q + 1}}} {Z_n^{m \ge 0}(x,a_{q,q + 1}^yx + b_{q,q + 1}^y)\textrm{d}x} = N_n^m\sum\limits_{k = 0}^{n'} {\left( {\begin{array}{c} {n'}\\ k \end{array}} \right)\left( {\begin{array}{c} {n' + \left| m \right| + k}\\ {n'} \end{array}} \right)} \,\sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)} \,\sum\limits_{p = \left\lceil {v/2} \right\rceil }^{\left\lfloor {\left( {k + \left| m \right| + v} \right)/2} \right\rfloor } {{{\left( { - 1} \right)}^{n' - k + v + p}}} \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\begin{array}{c} {k + \left| m \right|}\\ {2p - v} \end{array}} \right)\sum\limits_{t = 0}^{2p} {\left( {\begin{array}{c} {2p}\\ t \end{array}} \right)} a_{q,q + 1}^{y}{}^{2p - t}b_{q,q + 1}^{y}{}^{t}\left( {\frac{{{x_{q + 1}}^{2k + \left| m \right| - t + 1} - {x_q}^{2k + \left| m \right| - t + 1}}}{{2k + \left| m \right| - t + 1}}} \right) \end{array},$$
and
$$\begin{array}{l} \int\limits_{{x_q}}^{{x_{q + 1}}} {Z_n^{m < 0}(x,a_{q,q + 1}^yx + b_{q,q + 1}^y)\textrm{d}x} = N_n^m\sum\limits_{k = 0}^{n'} {\left( {\begin{array}{c} {n'}\\ k \end{array}} \right)\left( {\begin{array}{c} {n' + \left| m \right| + k}\\ {n'} \end{array}} \right)} \,\sum\limits_{v = 0}^k {\left( {\begin{array}{c} k\\ v \end{array}} \right)} \,\sum\limits_{p = \left\lceil {\left( {v + 1} \right)/2} \right\rceil }^{\left\lfloor {\left( {k + \left| m \right| + v + 1} \right)/2} \right\rfloor } {{{\left( { - 1} \right)}^{n' - k + v + p - 1}}} \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\begin{array}{c} {k + \left| m \right|}\\ {2p - 1 - v} \end{array}} \right)\sum\limits_{t = 0}^{2p - 1} {\left( {\begin{array}{c} {2p - 1}\\ t \end{array}} \right)} a_{q,q + 1}^{y}{}^{2p - 1 - t}b_{q,q + 1}^{y}{}^{t}\left( {\frac{{{x_{q + 1}}^{2k + \left| m \right| - t + 1} - {x_q}^{2k + \left| m \right| - t + 1}}}{{2k + \left| m \right| - t + 1}}} \right). \end{array}$$
These expressions can then be used in Eqs. (4) and (5) to evaluate the average Zernike gradients.

6. Application example: The Shack-Hartmann wavefront sensor

In the SHWS, each uniformly illuminated lenslet [82] forms an image onto a pixelated sensor that shifts relative to a reference position, proportionally to the average wavefront slope over the lenslet area [64,65,73,8386]. The wavefront can then be estimated by fitting the measured slopes to the calculated slopes due to a linear combination of basis functions such as the Zernike polynomials. Here we compare the formulae derived in the previous section for calculating such average gradients against alternative methods in two simulated SHWSs with 100% fill factor square lenslets, with 7 and 23 fully illuminated lenslets across the pupil. All calculations were performed using an I9-7920X central processing unit (Intel, Santa Clara, CA, USA), using Matlab release 2017b (Mathworks, Natick, MA, USA). Slopes were calculated for all lenslets and Zernike polynomials up to the 9th radial order using the following methods:

  • Center value: Zernike slope at the lenslet center.
  • 2D sampling average: evaluating the Zernike slope over a square grid of 20×20 uniformly spaced samples per lenslet, and then calculating their average.
  • 2D integration: numerically integrating the Zernike slope over the lenslet area using Matlab’s integral2 function with default tolerances.
  • 1D integration: numerical Zernike polynomial integration along the lenslet perimeter using Matlab’s integral function with default tolerances.
  • Symbolic calculation: symbolic Zernike polynomial integration in Cartesian coordinates (defined in Eqs. (19) and (20)) along the lenslet perimeter, using Matlab’s symbolic toolbox.
  • Analytical expression: evaluating the gradient average formulae derived in the previous section, that is, using Eqs. (2528).

The symbolic calculation method is used here as the true value, although both the analytical expression and the symbolic calculation methods are exact and should, therefore, provide the same results up to 16 digits (the default precision of Matlab) other than for rounding errors. The relative errors were calculated as the (Euclidean) norm of the polynomial gradients for each method divided by the norm of the same gradient calculated using the symbolic calculation. For timing purposes, and although not exhaustively optimized, all gradient calculations above were implemented using matrix operations when possible.

The results plotted in Fig. 3, show that, as expected, due to its direct evaluation of the lowest order polynomial and least samples across all methods, the evaluation of the gradient at the lenslet center is the fastest but also the least accurate approach. The averaging of 400 uniformly spaced discrete samples per lenslet (2D sampling average) is approximately two orders of magnitude slower and five times more accurate. Both numerical integration methods (2D and 1D integration) require comparable calculation times which are an order of magnitude higher than the 2D sample averaging but reduce errors by about ten orders of magnitude. Interestingly, and within each radial order, all methods show larger errors for the polynomials with lower azimuthal order. Tip and tilt relative errors for the simulated SHWS with 37 lenslets (Fig. 3, top row), do not appear on this plot because they are exactly zero. In the SHWS with 401 lenslets, however (Fig. 3, bottom row) these errors, when not exactly zero, the relative error is smaller than 10−12%, which is within the tolerance of the numerical integration algorithms used. Finally, the formulae derived in the previous section (labeled Analytical expression in the figure legend), require two orders of magnitude less time than the numerical integration methods and (on average) greater than two orders of magnitude lower error. The latter is, as expected, within Matlab’s numerical error.

 figure: Fig. 3.

Fig. 3. Comparison of numerical and analytical methods for estimating average Zernike gradient values over square areas within a circular pupil.

Download Full Size | PDF

7. Summary

We showed that the average wavefront gradient over a subaperture can be reduced to a one-dimensional integral of the wavefront along the perimeter. This was followed by a re-derivation of expressions for the Zernike polynomials in Cartesian coordinates to facilitate their direct integration along the perimeter of polygons. The resulting formulae only require the evaluation of polynomials at the vertices. Finally, when used in two simulated SHWSs with square lenslets, these formulae show a superior combination of calculation time and accuracy when compared to numerical [7377], and symbolic integration. Application of these formulae to hexagonal lenslets, also commonly used [24,87,88], is straightforward.

Funding

National Eye Institute (P30-EY026877, R01-EY025231, R01-EY028287, U01-EY025477); Research to Prevent Blindness (Challenge Grant).

Disclosures

The authors declare no conflicts of interest. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

1. R. V. Shack and B. C. Platt, “Production and use of a lenticular Hartmann screen,” J. Opt. Soc. Am. 2013(5), 1–12 (2013). [CrossRef]  

2. D. Vandenberg, W. Humbel, and A. Wertheimer, “Quantitative evaluation of optical surfaces by means of an improved Foucault test approach,” Opt. Eng. 32(8), 1951–1954 (1993). [CrossRef]  

3. B. Horwitz, “New pupil-plane wavefront gradient sensor,” in Adaptive Optics in Astronomy, (SPIE, 1994), pp. 496–501.

4. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt. 43(2), 289–293 (1996). [CrossRef]  

5. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24(14), 951–953 (1999). [CrossRef]  

6. S. Y. Haffert, “Generalised optical differentiation wavefront sensor: a sensitive high dynamic range wavefront sensor,” Opt. Express 24(17), 18986–19007 (2016). [CrossRef]  

7. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vis. Sci. 78(3), 152–156 (2001). [CrossRef]  

8. W. J. Hament, V. A. Nabar, and R. M. M. A. Nuijts, “Repeatability and validity of Zywave aberrometer measurements,” J. Cataract Refractive Surg. 28(12), 2135–2141 (2002). [CrossRef]  

9. G. Steele, D. Ireland, and S. Block, “Cycloplegic autorefraction results in pre-school children using the Nikon Retinomax Plus and the Welch Allyn SureSight,” Optom. Vis. Sci. 80(8), 573–577 (2003). [CrossRef]  

10. S. T. Awwad, M. El-Kateb, and J. P. McCulley, “Comparative higher-order aberration measurement of the LADARWave and Visx WaveScan aberrometers at varying pupil sizes and after pharmacologic dilation and cycloplegia,” J. Cataract Refractive Surg. 32(2), 203–214 (2006). [CrossRef]  

11. J. Han, N. S. Brown, S. Yoon, and G. Yoon, “Clinical evaluation of handheld wavefront aberrometer to measure refractive error in children,” Invest. Ophthalmol. Vis. Sci. 57(12), 6248 (2016).

12. M. Mülhaupt, S. Dietzko, J. Wolffsohn, and S. Bandlitz, “Corneal topography with an aberrometry-topography system,” Cont. Lens Anterio. 41(5), 436–441 (2018). [CrossRef]  

13. M. Rubio, C. S. Hernández, E. Seco, P. Perez-Merino, I. Casares, S. R. Dave, D. Lim, N. J. Durr, and E. Lage, “Validation of an Affordable Handheld Wavefront Autorefractor,” Optom. Vis. Sci. 96(10), 726–732 (2019). [CrossRef]  

14. M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,” J. Refract. Surg. 16(2), 116–121 (2000).

15. M. Mrochen, M. Kaemmerer, and T. Seiler, “Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery,” J. Cataract Refractive Surg. 27(2), 201–207 (2001). [CrossRef]  

16. M. Bueeler, M. Mrochen, and T. Seiler, “Maximum permissible lateral decentration in aberration-sensing and wavefront-guided corneal ablation,” J. Cataract Refractive Surg. 29(2), 257–263 (2003). [CrossRef]  

17. T.-I. Kim, S.-J. Yang, and H. Tchah, “Bilateral comparison of wavefront-guided versus conventional laser in situ keratomileusis with Bausch and Lomb Zyoptix,” J. Refract. Surg. 20(5), 432–438 (2004). [CrossRef]  

18. G. Muñoz, C. Albarrán-Diego, R. Montés-Micó, A. Rodríguez-Galietero, and J. L. Alió, “Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens,” J. Cataract Refractive Surg. 32(8), 1320–1327 (2006). [CrossRef]  

19. M. Packer, “Effect of intraoperative aberrometry on the rate of postoperative enhancement: Retrospective study,” J. Cataract Refractive Surg. 36(5), 747–755 (2010). [CrossRef]  

20. E. E. Manche and W. W. Haw, “Wavefront-guided laser in situ keratomileusis (Lasik) versus wavefront-guided photorefractive keratectomy (Prk): a prospective randomized eye-to-eye comparison (an American Ophthalmological Society thesis),” Trans. Am. Ophthalmol. Soc. 109201-220 (2011).

21. A. P. Canto, P. Chhadva, F. Cabot, A. Galor, S. H. Yoo, P. K. Vaddavalli, and W. W. Culbertson, “Comparison of IOL power calculation methods and intraoperative wavefront aberrometer in eyes after refractive surgery,” J. Refract. Surg. 29(7), 484–489 (2013). [CrossRef]  

22. S. Schallhorn, M. Brown, J. Venter, D. Teenan, K. Hettinger, and H. Yamamoto, “Early clinical outcomes of wavefront-guided myopic LASIK treatments using a new-generation Hartmann-Shack aberrometer,” J. Refract. Surg. 30(1), 14–21 (2013). [CrossRef]  

23. A. Gordon-Shaag, D. P. Piñero, C. Kahloun, D. Markov, T. Parnes, L. Gantz, and E. Shneor, “Validation of refraction and anterior segment parameters by a new multi-diagnostic platform (VX120),” J. Optom. 11(4), 242–251 (2018). [CrossRef]  

24. J. Liang, D. R. Williams, and D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997). [CrossRef]  

25. J. Z. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997). [CrossRef]  

26. A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002). [CrossRef]  

27. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004). [CrossRef]  

28. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006). [CrossRef]  

29. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011). [CrossRef]  

30. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994). [CrossRef]  

31. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000). [CrossRef]  

32. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001). [CrossRef]  

33. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002). [CrossRef]  

34. A. Roorda, “Adaptive optics for studying visual function: A comprehensive review,” J. Vis. 11(5), 6 (2011). [CrossRef]  

35. E. J. Fernández, P. M. Prieto, and P. Artal, “Binocular adaptive optics visual simulator,” Opt. Lett. 34(17), 2628–2630 (2009). [CrossRef]  

36. M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017). [CrossRef]  

37. N. Suchkov, E. J. Fernández, and P. Artal, “Wide-range adaptive optics visual simulator with a tunable lens,” J. Opt. Soc. Am. A 36(5), 722–730 (2019). [CrossRef]  

38. M. Vinas, C. Benedi-Garcia, S. Aissati, D. Pascual, V. Akondi, C. Dorronsoro, and S. Marcos, “Visual simulators replicate vision with multifocal lenses,” Sci. Rep. 9(1), 1539 (2019). [CrossRef]  

39. J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack–Hartmann wavefront sensor,” J. Microsc. 205(1), 61–75 (2002). [CrossRef]  

40. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. R. Soc., A 365(1861), 2829–2843 (2007). [CrossRef]  

41. S. Tuohy and A. G. Podoleanu, “Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor,” Opt. Express 18(4), 3458–3476 (2010). [CrossRef]  

42. J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, 1998).

43. R. W. Wilson, “SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337(1), 103–108 (2002). [CrossRef]  

44. P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, and D. M. Summers, “The W. M. Keck Observatory laser guide star adaptive optics system: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006). [CrossRef]  

45. B. M. Levine, E. A. Martinsen, A. Wirth, A. Jankevics, M. Toledo-Quinones, F. Landers, and T. L. Bruno, “Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics corrections in laser communications,” Appl. Opt. 37(21), 4553–4560 (1998). [CrossRef]  

46. M. Plett, P. Barbier, D. Rush, P. Polak-Dingels, and B. Levine, “Measurement error of a Shack-Hartmann wavefront sensor in strong scintillation conditions,” in Propagation and Imaging through the Atmosphere II, (SPIE, 1998), pp. 211–220.

47. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack–Hartmann wave-front sensor,” Appl. Opt. 40(3), 366–374 (2001). [CrossRef]  

48. S. W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29(24), 2837–2839 (2004). [CrossRef]  

49. R. Barros, S. Keary, L. Yatcheva, I. Toselli, and S. Gladysz, “Experimental setup for investigation of laser beam propagation along horizontal urban path,” in Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII, (SPIE, 2014), pp. 92421L.

50. J. Vargas, L. González-Fernandez, J. A. Quiroga, and T. Belenguer, “Shack–Hartmann centroid detection method based on high dynamic range imaging and normalization techniques,” Appl. Opt. 49(13), 2409–2416 (2010). [CrossRef]  

51. R. H. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67(3), 375–378 (1977). [CrossRef]  

52. J. W. Hardy, J. E. Lefebvre, and C. L. Koliopoulos, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67(3), 360–369 (1977). [CrossRef]  

53. D. L. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67(3), 370–375 (1977). [CrossRef]  

54. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70(8), 998–1006 (1980). [CrossRef]  

55. J. Herrmann, “Least-squares wave front errors of minimum norm,” J. Opt. Soc. Am. 70(1), 28–35 (1980). [CrossRef]  

56. M. P. Rimmer, “Method for Evaluating Lateral Shearing Interferograms,” Appl. Opt. 13(3), 623–629 (1974). [CrossRef]  

57. R. Cubalchini, “Modal wave-front estimation from phase derivative measurements,” J. Opt. Soc. Am. 69(7), 972–977 (1979). [CrossRef]  

58. J. Wenhan and L. Huagui, “Hartmann-Shack wavefront sensing and wavefront control algorithm,” in Adaptive Optics and Optical Structures, (SPIE, 1990), pp. 82–93.

59. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack–Hartmann sensor,” Appl. Opt. 31(32), 6902–6908 (1992). [CrossRef]  

60. N. Takato, M. Iye, and I. Yamaguchi, “Wavefront reconstruction error of Shack-Hartmann wavefront sensors,” Publ. Astron. Soc. Pac. 106(696), 182 (1994). [CrossRef]  

61. S. Esposito and A. Riccardi, “Pyramid wavefront sensor behavior in partial correction adaptive optic systems,” Astron. Astrophys. 369(2), L9–L12 (2001). [CrossRef]  

62. L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack–Hartmann sensor,” Opt. Commun. 245(1-6), 255–269 (2005). [CrossRef]  

63. X. Ma, J. Mu, C. Rao, J. Yang, X. Rao, and Y. Tian, “Extension of the modal wave-front reconstruction algorithm to non-uniform illumination,” Opt. Express 22(13), 15589–15598 (2014). [CrossRef]  

64. I. Mochi and K. A. Goldberg, “Modal wavefront reconstruction from its gradient,” Appl. Opt. 54(12), 3780–3785 (2015). [CrossRef]  

65. G.-M. Dai, “Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions,” J. Opt. Soc. Am. A 13(6), 1218–1225 (1996). [CrossRef]  

66. X. Wei and L. N. Thibos, “Modal estimation of wavefront phase from slopes over elliptical pupils,” Optom. Vis. Sci. 87(10), E767–E777 (2010). [CrossRef]  

67. G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt. 35(31), 6162–6172 (1996). [CrossRef]  

68. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), SuC1 (2002). [CrossRef]  

69. J. Nam, L. N. Thibos, and D. R. Iskander, “Zernike radial slope polynomials for wavefront reconstruction and refraction,” J. Opt. Soc. Am. A 26(4), 1035–1048 (2009). [CrossRef]  

70. V. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica 1(7-12), 689–704 (1934). [CrossRef]  

71. M. Born and E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon Press, 1980).

72. O. Soloviev and G. Vdovin, “Estimation of the total error of modal wavefront reconstruction with Zernike polynomials and Hartmann-Shack test,” in International Workshop on Adaptive Optics for Industry and Medicine, (SPIE, 2006), pp. 60181–60112.

73. J. Herrmann, “Cross coupling and aliasing in modal wave-front estimation,” J. Opt. Soc. Am. 71(8), 989–992 (1981). [CrossRef]  

74. G.-M. Dai, “Modified Hartmann-Shack wavefront sensing and iterative wavefront reconstruction,” in Adaptive Optics in Astronomy, (SPIE, 1994), pp. 562–573.

75. S. Bara, “Measuring eye aberrations with Hartmann-Shack wave-front sensors: should the irradiance distribution across the eye pupil be taken into account?” J. Opt. Soc. Am. A 20(12), 2237–2245 (2003). [CrossRef]  

76. S. A. Burns, J. S. McLellan, and S. Marcos, “Sampling effects on measurements of wavefront aberrations of the eye,” Invest. Ophthalmol. Vis. Sci. 44(13), 4193 (2003).

77. L. Diaz-Santana, G. Walker, and S. X. Bará, “Sampling geometries for ocular aberrometry: A model for evaluation of performance,” Opt. Express 13(22), 8801–8818 (2005). [CrossRef]  

78. R. S. Biesheuvel, A. J. E. M. Janssen, P. Pozzi, and S. F. Pereira, “Implementation and benchmarking of a crosstalk-free method for wavefront Zernike coefficients reconstruction using Shack-Hartmann sensor data,” OSA Continuum 1(2), 581–603 (2018). [CrossRef]  

79. M. Carpio and D. Malacara, “Closed Cartesian representation of the Zernike polynomials,” Opt. Commun. 110(5-6), 514–516 (1994). [CrossRef]  

80. W. Cox, Vector Calculus (Butterworth-Heinemann, 1998).

81. I. Bronshtein and K. Semendyayev, “Handbook of Mathematics,” (Springer, 2017).

82. V. Akondi, S. Steven, and A. Dubra, “Centroid error due to non-uniform lenslet illumination in the Shack–Hartmann wavefront sensor,” Opt. Lett. 44(17), 4167–4170 (2019). [CrossRef]  

83. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73(12), 1771–1776 (1983). [CrossRef]  

84. B. M. Welsh and C. S. Gardner, “Performance analysis of adaptive-optics systems using laser guide stars and sensors,” J. Opt. Soc. Am. A 6(12), 1913–1923 (1989). [CrossRef]  

85. M. C. Roggemann, “Optical performance of fully and partially compensated adaptive optics systems using least-squares and minimum variance phase reconstructors,” Comput. Electr. Eng. 18(6), 451–466 (1992). [CrossRef]  

86. V. Akondi and A. Dubra, “Accounting for focal shift in the Shack–Hartmann wavefront sensor,” Opt. Lett. 44(17), 4151–4154 (2019). [CrossRef]  

87. G. Chanan, J. Nelson, and T. Mast, “Segment alignment for the Keck telescope primary mirror,” in Advanced Technology Optical Telescopes III, (SPIE, 1986), pp. 466–470.

88. L. Goad and J. Beckers, “A near infrared astronomical adaptive optics system,” in Active Telescope Systems, (SPIE, 1989), pp. 73–81.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Separation of the “left” and “right’ perimeters of a convex subaperture region Ω used for calculating the average wavefront slope along the x-axis.
Fig. 2.
Fig. 2. Geometry used for calculating the average x-derivative of a function over a non-convex region with continuous perimeter by dividing it into convex regions.
Fig. 3.
Fig. 3. Comparison of numerical and analytical methods for estimating average Zernike gradient values over square areas within a circular pupil.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

W ( x , y ) x Ω = Ω W ( x , y ) x d x d y / Ω W ( x , y ) x d x d y Ω d x d y Ω d x d y .
W ( x , y ) x Ω = [ B A W ( R ( y ) , y ) d y B A W ( L ( y ) , y ) d y ] / [ B A W ( R ( y ) , y ) d y B A W ( L ( y ) , y ) d y ] Ω d x d y Ω d x d y .
W ( x , y ) x Ω = W ( x perimeter ( y ) , y ) d y / W ( x perimeter ( y ) , y ) d y Ω d x d y Ω d x d y
W ( x , y ) x Ω = [ q = 1 N y q y q + 1 W ( a q , q + 1 x y + b q , q + 1 x , y ) d y ] / [ q = 1 N y q y q + 1 W ( a q , q + 1 x y + b q , q + 1 x , y ) d y ] Ω d x d y Ω d x d y ,
W ( x , y ) y Ω = [ q = 1 N x q x q + 1 W ( x , a q , q + 1 y x + b q , q + 1 y ) d x ] / [ q = 1 N x q x q + 1 W ( x , a q , q + 1 y x + b q , q + 1 y ) d x ] Ω d x d y Ω d x d y .
x = a q , q + 1 x y + b q , q + 1 x ,
y = a q , q + 1 y x + b q , q + 1 y ,
W ( x , y ) x Ω = 2 q = 1 N y q y q + 1 W ( a q , q + 1 x y + b q , q + 1 x , y ) d y / 2 q = 1 N y q y q + 1 W ( a q , q + 1 x y + b q , q + 1 x , y ) d y q = 1 N ( x q y q + 1 y q x q + 1 ) q = 1 N ( x q y q + 1 y q x q + 1 ) ,
W ( x , y ) y Ω = 2 q = 1 N x q x q + 1 W ( x , a q , q + 1 y x + b q , q + 1 y ) d x / 2 q = 1 N x q x q + 1 W ( x , a q , q + 1 y x + b q , q + 1 y ) d x q = 1 N ( x q y q + 1 y q x q + 1 ) q = 1 N ( x q y q + 1 y q x q + 1 ) ,
Z n m ( ρ , θ ) = N n m R n | m | ( ρ ) { cos ( | m | θ ) , for  m 0 sin ( | m | θ ) , for  m < 0
R n | m | ( ρ ) = s = 0 ( n | m | ) / ( n | m | ) 2 2 ( 1 ) s ( n s ) ! s ! [ ( n + | m | ) / ( n + | m | ) 2 2 s ] ! [ ( n | m | ) / ( n | m | ) 2 2 s ] ! ρ n 2 s .
Z n m ( ρ , θ ) = N n m k = 0 n ( 1 ) n k ( n k ) ( n + | m | + k n ) ρ 2 k + | m | { cos ( | m | θ ) , for  m 0 sin ( | m | θ ) , for  m < 0
Z n m ( x , y ) = N n m k = 0 n ( 1 ) n k ( n k ) ( n + | m | + k n ) ( x 2 + y 2 ) k { Re { ( x + i y ) | m | } , for  m 0 Im { ( x + i y ) | m | } , for  m < 0
( x 2 + y 2 ) k ( x + i y ) | m | = [ v = 0 k ( k v ) x k v ( 1 ) v i v y v ] [ u = 0 k + | m | ( k + | m | u ) x k + | m | u i u y u ] ,
( x 2 + y 2 ) k ( x + i y ) | m | = v = 0 k ( 1 ) v ( k v ) u = 0 k + | m | ( k + | m | u ) i u + v x 2 k + | m | u v y u + v .
( x 2 + y 2 ) k ( x + i y ) | m | = v = 0 k ( 1 ) v ( k v ) p = v k + | m | + v ( k + | m | p v ) i p x 2 k + | m | p y p .
Re { ( x 2 + y 2 ) k ( x + i y ) | m | } = v = 0 k ( 1 ) v ( k v ) p even v p k + | m | + v ( k + | m | p v ) i p x 2 k + | m | p y p ,
Im { ( x 2 + y 2 ) k ( x + i y ) | m | } = v = 0 k ( 1 ) v ( k v ) p odd v p k + | m | + v ( k + | m | p v ) i p 1 x 2 k + | m | p y p .
Z n m 0 ( x , y ) = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = v / 2 ( k + | m | + v ) / 2 ( 1 ) n k + v + p ( k + | m | 2 p v ) x 2 k + | m | 2 p y 2 p ,
Z n m < 0 ( x , y ) = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = ( v + 1 ) / 2 ( k + | m | + v + 1 ) / 2 ( 1 ) n k + v + p 1 ( k + | m | 2 p 1 v ) x 2 k + | m | 2 p + 1 y 2 p 1
Z n m 0 ( a q , q + 1 x y + b q , q + 1 x , y ) = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = v / 2 ( k + | m | + v ) / 2 ( 1 ) n k + v + p ( k + | m | 2 p v ) ( a q , q + 1 x y + b q , q + 1 x ) 2 k + | m | 2 p y 2 p ,
Z n m < 0 ( a q , q + 1 x y + b q , q + 1 x , y ) = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = ( v + 1 ) / 2 ( k + | m | + v + 1 ) / 2 ( 1 ) n k + v + p 1 ( k + | m | 2 p 1 v ) ( a q , q + 1 x y + b q , q + 1 x ) 2 k + | m | 2 p + 1 y 2 p 1 .
Z n m 0 ( a q , q + 1 x y + b q , q + 1 x , y ) = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = v / 2 ( k + | m | + v ) / 2 ( 1 ) n k + v + p ( k + | m | 2 p v ) t = 0 2 k + | m | 2 p ( 2 k + | m | 2 p t ) a q , q + 1 x 2 k + | m | 2 p t b q , q + 1 x t y 2 k + | m | t ,
Z n m < 0 ( a q , q + 1 x y + b q , q + 1 x , y ) = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = ( v + 1 ) / 2 ( k + | m | + v + 1 ) / 2 ( 1 ) n k + v + p 1 ( k + | m | 2 p 1 v ) t = 0 2 k + | m | 2 p + 1 ( 2 k + | m | 2 p + 1 t ) a q , q + 1 x 2 k + | m | 2 p + 1 t b q , q + 1 x t y 2 k + | m | t . .
y q y q + 1 Z n m 0 ( a q , q + 1 x y + b q , q + 1 x , y ) d y = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = v / 2 ( k + | m | + v ) / 2 ( 1 ) n k + v + p ( k + | m | 2 p v ) × t = 0 2 k + | m | 2 p ( 2 k + | m | 2 p t ) a q , q + 1 x 2 k + | m | 2 p t b q , q + 1 x t ( y q + 1 2 k + | m | t + 1 y q 2 k + | m | t + 1 2 k + | m | t + 1 ) ,
y q y q + 1 Z n m < 0 ( a q , q + 1 x y + b q , q + 1 x , y ) d y = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = ( v + 1 ) / 2 ( k + | m | + v + 1 ) / 2 ( 1 ) n k + v + p 1 ( k + | m | 2 p 1 v ) [ t = 0 2 k + | m | 2 p + 1 ( 2 k + | m | 2 p + 1 t ) a q , q + 1 x 2 k + | m | 2 p + 1 t b q , q + 1 x t ( y q + 1 2 k + | m | t + 1 y q 2 k + | m | t + 1 2 k + | m | t + 1 ) ] .
x q x q + 1 Z n m 0 ( x , a q , q + 1 y x + b q , q + 1 y ) d x = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = v / 2 ( k + | m | + v ) / 2 ( 1 ) n k + v + p ( k + | m | 2 p v ) t = 0 2 p ( 2 p t ) a q , q + 1 y 2 p t b q , q + 1 y t ( x q + 1 2 k + | m | t + 1 x q 2 k + | m | t + 1 2 k + | m | t + 1 ) ,
x q x q + 1 Z n m < 0 ( x , a q , q + 1 y x + b q , q + 1 y ) d x = N n m k = 0 n ( n k ) ( n + | m | + k n ) v = 0 k ( k v ) p = ( v + 1 ) / 2 ( k + | m | + v + 1 ) / 2 ( 1 ) n k + v + p 1 ( k + | m | 2 p 1 v ) t = 0 2 p 1 ( 2 p 1 t ) a q , q + 1 y 2 p 1 t b q , q + 1 y t ( x q + 1 2 k + | m | t + 1 x q 2 k + | m | t + 1 2 k + | m | t + 1 ) .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.