Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Vanadium dioxide nanogrid films for high transparency smart architectural window applications

Open Access Open Access

Abstract

This study presents a novel approach towards achieving high luminous transmittance (Tlum) for vanadium dioxide (VO2) thermochromic nanogrid films whilst maintaining the solar modulation ability (ΔTsol). The perforated VO2-based films employ orderly-patterned nano-holes, which are able to favorably transmit visible light dramatically but retain large near-infrared modulation, thereby enhancing ΔTsol. Numerical optimizations using parameter search algorithms have implemented through a series of Finite Difference Time Domain (FDTD) simulations by varying film thickness, cell periodicity, grid dimensions and variations of grid arrangement. The best performing results of Tlum (76.5%) and ΔTsol (14.0%) are comparable, if not superior, to the results calculated from nanothermochromism, nanoporosity and biomimic nanostructuring. It opens up a new approach for thermochromic smart window applications.

© 2015 Optical Society of America

1. Introduction

The energy usage of buildings in the US is between 20% and 40% of US primary energy demand and approximately half of this portion is actually spent on heating or cooling buildings [1]. In order to cut down the energy consumption of air conditioning, incorporation of intelligent architectural windows is considered as a green solution to improve building efficiency. Thermochromic smart windows can modulate solar thermal energy through adaptive response to weather conditions and vanadium dioxide (VO2) is one of leading materials that could be used in the applications of thermochromic smart windows [2–4]. VO2 has an excellent temperature-responsive behavior of switching near-infrared (NIR) transmittance upon a critical transition temperature (τc) of 341 K (68 °C) near room temperature, whereas maintaining luminous transmittance (Tlum) from 380 nm to 780 nm [5, 6]. The practical architectural windows requires Tlum larger than 60% [7, 8] while concurrently maintaining moderately high solar modulation (ΔTsol). A dilemma to simultaneously improve both Tlum and ΔTsol of inorganic VO2 films has been tackled by a range of approaches via simulation as shown in Table 1 and the efficacy of such simulations have been proved experimentally [9–13].

Tables Icon

Table 1. A comparison of simulated thermochromic performances presented by contemporary VO2 smart window systems

Introducing pores into VO2 films [12] reduces the optical constants, thereby overcoming the physical limits of continuous films [14]. By imbedding VO2 nanoparticles in dielectric matrix [10, 11, 14, 17] large luminous absorption of VO2 at both high and low temperature in the continuous film can be alleviated to enhance the Tlum. Biomimetic surface [13, 15] with high aspect ratio paraboloid cones provides antireflection functionality leading to largely improved Tlum while larger volume of VO2 contained in such structure offered enhanced ΔTsol. However, the process of synthesizing good crystalline VO2 nanoparticles or achieving extremely high aspect ratio nanostructures usually involves complex procedures, low reproducibility and poor durability [11, 17, 18]. The more recent pure organic [5] and hybrid thermochromic coatings [19] enjoyed unprecedented combination of high Tlum and ΔTsol, however the loss of transparency at high temperature is not tolerated in many applications.

To maximize Tlum without the expense of ΔTsol, this study pioneers a novel smart window design using nano-patterned VO2-based perforated films. Since ΔTsol of VO2 films is largely contributed by the NIR modulation (ΔTNIR) instead of luminous modulation (ΔTlum) [2, 20], nanogrid structures physically allow more short-wavelength visible light to pass through the holes, while retaining the advantageous long-wavelength NIR modulating abilities of VO2. Meanwhile, the abundant ridge area is capable of holding a high volume of VO2, which could possibly intend to facilitate strong ΔTsol. The dimension and shape of nanogrid design, as well as cell periodicity and film thickness were investigated by using Finite Difference Time Domain (FDTD) simulations. The calculated data demonstrate that nano-patterned films offer significant improvement of Tlum without deteriorating ΔTsol, which open up a new approach to enhance thermochromic properties for smart windows in the real-life applications.

2. Optical design for VO2-based nanogrid films

2.1 Structural models

In order for the perforated nanogrid not to diffract visible light or be resolved by incident light, the cell periodicity (see Fig. 1), which is defined as the distance between two adjacent holes, should be smaller than the wavelength of the visible light in the medium [21, 22]. The coating thickness should not be too large to degrade window transmittance due to light absorption [15]. Three structural models used in current optical simulation work are schematically illustrated in Fig. 1, namely square cells with square holes (Fig. 1(a)) [21, 23], square cells with circular holes (Fig. 1(b)) [24–26] and hexagonal cells with circular holes (the most densely packed) (Fig. 1(c)) [15, 27, 28].

 figure: Fig. 1

Fig. 1 Three different 3-dimensional models of VO2-based perforated thin films, (a) square holes in square lattices, (b) circular holes in square lattices and (c) circular holes in hexagonal lattices are densely packed with defined periodicity and hole length/radius as labeled.

Download Full Size | PDF

2.2 FDTD simulation

We performed 3D finite difference time domain (FDTD) simulations using commercial software (FDTD solution, Lumerical Inc. Vancouver, Canada). A uniform mesh size of 3 nm (x, y, and z directions) was chosen. The optical constants of materials were taken in the spectrum range from 300 nm to 2500 nm [29]. The dielectric dispersion profiles of the materials were fitted by the multi-coefficient model that relies on an extensive set of basis functions. To calculate the frequency dependent transmittance, PML (perfectly matched layer) boundary conditions were set for the z direction, and Bloch boundary conditions were applied to x and y directions of the simulation region. The VO2 nanogrid films were supported by a glass substrate, the entire system was suspended in air/vacuum, and the incident beam was modeled as a plane wave traveling along the z-axis. Field monitors were placed at fixed z position below the surface of the VO2 nanogrid film to detect the intensity of the transmitted beam.

2.3 Optical calculations of thermochromic properties

In order to quantify the amount of visible light useful for human vision under normal conditions, a photopically averaged transmittance has been defined as the integrated luminous transmittance Tlum. Similarly, the terms named as “integrated NIR transmittance TNIR” and “integrated solar transmittance Tsol” are to define the NIR light and solar averaged transmittance respectively, as to quantify the amount of NIR or solar thermal energy entering a building. Upon these determinations, the modulations of transmitted luminous, NIR and solar energy are characterized as ΔTlum, ΔTNIR and ∆Tsol and they can be integrated by using the mathematical relationships stated below as Eq. (1) and Eq. (2).

Tlum=λ=380nm780nmϕlumT(λ)dλλ=380nm780nmϕlumdλTNIR=λ=780nm2500nmAM1.5(λ)T(λ)dλλ=780nm2500nmAM1.5(λ)dλTsol=λ=300nm2500nmAM1.5(λ)T(λ)dλλ=300nm2500nmAM1.5(λ)dλ
ΔTlum=Tlum(low)Tlum(high)ΔTNIR=TNIR(low)TNIR(high)ΔTsol=Tsol(low)Tsol(high)

Where T(λ) represents the measured film transmittance. The CIE (represents “Commission Internationale de I’eclairage”) photopic luminous efðciency of the human eye [30], Φlum, and the air mass (AM) 1.5 solar irradiance spectrum distribution [31] are used as weighting functions for the wavelength dependent transmittance coefðcients. The dimming effect of a smart window between cold and hot state is quantified as ∆Tlum. The wavelength range used for Tlum is 380 nm - 780 nm corresponding to the limits of human vision. The AM1.5 weighting spectrum is chosen for TNIR and Tsol calculations as it represents an overall yearly average for mid-latitudes including diffuse light from the ground and sky on a south facing surface tilted 37° from horizontal. The wavelength range used for these calculations is 300 nm - 2500 nm which accounts for 99.2% of terrestrial solar energy.

3. Computed optical data and discussion

3.1 Square holes in square cells

The contour (see Fig. 2(a)) suggests that with fixed periodicity, larger holes lead to increased Tlum and depressed ΔTsol, which is consistent with other observations [10, 20]. The table in Fig. 2(b) shows three selected samples and it suggested that Tlum could be enhanced without much sacrifice on ΔTsol compared with continuous thin films. For unknown reason, the sample with the period size of 180 nm and hole size of 80 nm as highlighted gives both enhanced Tlum(avg) (29.0 v.s. 26.0%) and ΔTsol (14.7 v.s 11.1%) compared with continuous films. This proves the efficiencies of nanogrid VO2 nanostructures, which has the great potential to enhance both Tlum and ΔTsol.

 figure: Fig. 2

Fig. 2 Thermochroimc properteis for square holes perforated in VO2 square cells at different values of periodicity and square hole length. (a) Contour lines (red dashed) of ΔTsol are overlaid upon a coutour map of Tlum, (b) thermochomic properties of selected samples in table form.

Download Full Size | PDF

3.2 Structure design for nanogrid

Different nanostructures may induce different optical performance due to light interaction with different shapes of holes and cells. To exploit the shape and size effects, the nanogrid films are fixed at 110 nm thickness and 180 nm period. The computational results for each system are schematically displayed in Figs. 3(a)-3(d) respectively.

 figure: Fig. 3

Fig. 3 Relationship between nanogrid parameters and thermochromic properties in terms of (a) square holes (length varied from 30 nm to 150 nm) in square cells; (b) circular holes (radius varied from 20 nm to 80 nm) in square cells; (c) circular holes (radius varied from 20 nm to 80 nm) in hexagonal cells; (d) four different structural systems with similar fill factor; (e) solar transmittance and (f) light modulation ability as a function of fill factor ( = A(hole)A(cell)) of perforated films.

Download Full Size | PDF

According to Fig. 3(a), by inserting square holes into square cells with increasing hole length, the Tlum at both low and high temperature (black and red bar) are increased dramatically when the fill factor (FF) reaches to ~70% at the sacrifice of the ΔTsol (blue bar). Tlum(low) elevates dramatically from hole length of 30 nm to hole length of 150 nm, whereas the value is surpassed by Tlum(high) once hole length is greater than 90 nm, leading to a undesirable spectra overlap in the visible range (i.e., negative ∆Tlum). Since the short-wavelength visible light carries half of energy in the entire solar spectra [19], the negative ∆Tlum induces an observable degradation in ∆Tsol, which is undesirable for a good thermochromic performance.

The large increments of Tlum with increasing hole size also occur in the circular hole design systems either in square cells or in hexagonal cells as illustrated in Figs. 3(b) and 3(c). By comparing with square holes, the circular one reveals better thermochromic behaviors, because Tlum is doubled without jeopardizing ΔTsol appreciably. The highest averaged Tlum has been enhanced to ~63%, together with securely maintained ΔTsol at 9.22%, when 80 nm radius circular holes arrange in 180 nm period hexagonal cells.

By summarizing the relationship between FF and the transmission, it suggested that the Tlum, TNIR and Tsol at both low and high temperature are dominantly controlled by FF instead of the hole size or shape. This gives a general guideline for enhancing Tlum. In contrast, increasing the FF has much more complicated effects on the transmission difference between high and low temperatures as shown in Fig. 3(f), which is to the advantage of the possibility to enhance both Tlum and ΔTsol simultaneously via increasing the FF. It is of interest to observe that the ΔTNIR, ΔTsol and ΔTsol relate with the FF in a parallel way.

3.3 Circular holes in hexagonal cells

3.3.1 Thickness effect

As Tlum could be largely enhanced by increasing the FF, circular holes in hexagonal cells are chosen for further study due to the closest packed characteristics of such structure. In order to achieve ΔTsol much higher than that of continuous VO2 thin film, thickening the perforated nano-patterned film could be a feasible solution to raise VO2 content and compensate the slightly sacrificed ΔTsol when the FF is increased (Fig. 3(c)). With fixed periodicity and hole size, ΔTsol and Tlum were studied by increasing film thickness. The highest ΔTsol achievable is 16.7% if the film thickness is as thick as 400 nm (see Fig. 4(a)). Tlum keeps decreasing as the thickness increases. It is of great interest that as compared to continuous thin films (see Fig. 4(b)), the turning point (defined by the point where thickening loses its effect on increasing ΔTsol) of the perforated sample can be much thicker (400 nm) than that of the continuous film (160 nm).

 figure: Fig. 4

Fig. 4 Computed (a) thickness effect on ΔTsol (black) and Tlum(avg) (blue) for nanogrid films with period = 180 nm and hole radius = 80 nm, (b) thickness effect on continuous thin films (dashed black) and perforated films (solid red).

Download Full Size | PDF

3.3.2 Periodicity and fill factor

The influences of periodicity and FF on the optical behaviors are presented in Fig. 5(a) with fixed 120 nm hole radius and 300 nm film thickness. An obvious blue shift of the transmission peaks could be observed with reducing periodicity and increasing FF; meanwhile both transmission at high and low temperature increases dramatically. This is indicated in the Fig. 5(b) and transmission at both visible and NIR ranges could be enhanced significantly. Compared with continuous film, Tlum increases from 4.3 to 12.6% when the FF increases to 0.666. As the hole is touching the edge of cell with corresponding FF of 0.907, Tlum can be abruptly enhanced to nearly three times as compared with the sample where the FF is 0.773. Similar trends can be observed in both NIR transmission and solar transmission which suggests that with touching holes, the whole solar transmission could be boosted enormously. The periodicity effects on modulation (Fig. 5(c)) are more complicated. ΔTlumTNIR can be increased from 0.3%/18.8% (continuous film) to 5.0%/24.3% (the touching holes sample with corresponding largest FF). This, to large extent, favors the largely enhanced ΔTsol (8.6 v.s 14.0%) compared with continuous films.

 figure: Fig. 5

Fig. 5 (a) Computed spectra of transmittance for perforated VO2 films with different periodicity and FF as compared to continuous thin films. (All film thickness = 300 nm) (b) solar transmittance and (c) light modulation ability as a function of periodicity.

Download Full Size | PDF

3.4 Summary of parameter optimizations

The thermochromic properties of best performing samples are listed in Table 2. As hexagonal cells/circular holes provide the largest possible FF, good combinations of high transparency (> 70%) with moderately high ΔTsol (>10%) could be obtained with touching holes design. This finding surpasses the best reported simulation results such as nanoporous thin film and nanothermochromic coatings (Table 1). Although the ΔTsol is slightly lower (14.0% v.s.15.5%) than the moth-eye nanostructuring, the averaged Tlum is higher (76.5% v.s 68.5%). It should be noted that such biomimetic moth-eye structure with 500 nm height and 135 nm base-width nanostructures is of great technical challenge to achieve in practice.

Tables Icon

Table 2. Typical thermochromic properties for the samples with optimized nano-patterning parameters

Finally it should be mentioned that diffraction effects from the periodic structures were considered and found to be negligible. For window applications it is essential that the light transmittance will be direct, i.e. the window should not be diffractive. In order to evaluate possible diffraction effects in VO2 perforated film, the transmitted diffraction efficiencies at different orders were calculated using Rigorous Coupled Wave Analysis (RCWA) [22]. In the simulation, the circular holes were replaced with rectangular holes of the same surface area to reduce computation time. The calculations were performed for the optimum structure with the largest period. The diffraction depends on the ratio of the period to the wavelength and hence the highest effect is supposed to occur in the largest period and the shortest wavelengths. Therefore, the sample tested was with the period size of 240 nm, square hole size 212 nm, and thickness 300 nm. The transmission contribution is found mainly due to the zeroth order whereas the higher diffraction order efficiencies are up to 5% in the 500-600 nm range while it is less than 0.5% throughout the wavelength range 550-2500 nm.

4. Conclusion

Numerical optimizations using parameter search algorithms were implemented through a series of FDTD simulations with taking account of film thickness, geometrical design of nano-holes and cells as well as periodicity and FF. This study presents a novel approach towards achieving high Tlum for thermochromic smart window applications via VO2-based nanogrid perforated films whilst maintaining moderate ΔTsol as required for smart architectural window applications. Increasing the FF could tremendously enhance Tlum and the largest possible Tlum (~80%) could be acquired via touching holes configuration in hexagonal cells with circular hole design. Thickness effects on enhancing ΔTsol is limited to less than 200 nm in continuous films, whereas it is extended up to 400 nm by adopting periodic perforating structure. This opens up a new concept for thermochromic VO2-based films to satisfy the real-life requirements for smart window applications.

Acknowledgments

This Research was conducted by NTU-HUJ-BGU Nanomaterials for Energy and Water Management Programme under the Campus for Research Excellence and Technological Enterprise (CREATE), that is supported by the National Research Foundation, Prime Minister’s Office, Singapore.

References and links

1. B. Richter, D. Goldston, G. Crabtree, L. Glicksman, D. Goldstein, D. Greene, D. Kammen, M. Levine, M. Lubell, M. Savitz, D. Sperling, F. Schlachter, J. Scofield, and J. Dawson, “How America can look within to achieve energy security and reduce global warming,” Rev. Mod. Phys. 80(4), S1–S109 (2008). [CrossRef]  

2. N. Wang, S. Magdassi, D. Mandler, and Y. Long, “Simple sol-gel process and one-step annealing of vanadium dioxide thin films: Synthesis and thermochromic properties,” Thin Solid Films 534, 594–598 (2013). [CrossRef]  

3. C. Liu, N. Wang, and Y. Long, “Multifunctional overcoats on vanadium dioxide thermochromic thin films with enhanced luminous transmission and solar modulation, hydrophobicity and anti-oxidation,” Appl. Surf. Sci. 283, 222–226 (2013). [CrossRef]  

4. X. Cao, N. Wang, S. Magdassi, D. Mandler, and Y. Long, “Europium Doped Vanadium Dioxide Material: Reduced Phase Transition Temperature, Enhanced Luminous Transmittance and Solar Modulation,” Sci. Adv. Mater. 6(3), 558–561 (2014). [CrossRef]  

5. Y. Zhou, Y. F. Cai, X. Hu, and Y. Long, “Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications,” J. Mater. Chem. A 2(33), 13550–13555 (2014). [CrossRef]  

6. N. Wang, Y. Huang, S. Magdassi, D. Mandler, H. Liu, and Y. Long, “Formation of VO2 zero-dimensional/nanoporous layers with large supercooling effects and enhanced thermochromic properties,” Rsc Adv 3(19), 7124–7128 (2013). [CrossRef]  

7. M. A. Sobhan, R. T. Kivaisi, B. Stjerna, and C. G. Granqvist, “Thermochromism of sputter deposited WxV1−xO2 films,” Sol. Energy Mater. Sol. Cells 44(4), 451–455 (1996). [CrossRef]  

8. C. S. Blackman, C. Piccirillo, R. Binions, and I. P. Parkin, “Atmospheric pressure chemical vapour deposition of thermochromic tungsten doped vanadium dioxide thin films for use in architectural glazing,” Thin Solid Films 517(16), 4565–4570 (2009). [CrossRef]  

9. X. Cao, N. Wang, J. Y. Law, S. C. J. Loo, S. Magdassi, and Y. Long, “Nanoporous Thermochromic VO₂ (M) Thin Films: Controlled Porosity, Largely Enhanced Luminous Transmittance and Solar Modulating Ability,” Langmuir 30(6), 1710–1715 (2014). [CrossRef]   [PubMed]  

10. C. Liu, X. Cao, A. Kamyshny, J. Y. Law, S. Magdassi, and Y. Long, “VO₂/Si-Al gel nanocomposite thermochromic smart foils: Largely enhanced luminous transmittance and solar modulation,” J. Colloid Interface Sci. 427, 49–53 (2014). [CrossRef]   [PubMed]  

11. Z. Chen, Y. F. Gao, L. T. Kang, C. X. Cao, S. Chen, and H. J. Luo, “Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil,” J. Mater. Chem. A 2(8), 2718–2727 (2014). [CrossRef]  

12. L. Kang, Y. Gao, H. Luo, Z. Chen, J. Du, and Z. Zhang, “Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties,” ACS Appl. Mater. Interfaces 3(2), 135–138 (2011). [CrossRef]   [PubMed]  

13. X. K. Qian, N. Wang, Y. F. Li, J. H. Zhang, Z. C. Xu, and Y. Long, “Bioinspired Multifunctional Vanadium Dioxide: Improved Thermochromism and Hydrophobicity,” Langmuir 30(35), 10766–10771 (2014). [CrossRef]   [PubMed]  

14. S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Thermochromic undoped and Mg-doped VO2 thin films and nanoparticles: Optical properties and performance limits for energy efficient windows,” J. Appl. Phys. 115(5), 053513 (2014). [CrossRef]  

15. A. Taylor, I. Parkin, N. Noor, C. Tummeltshammer, M. S. Brown, and I. Papakonstantinou, “A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing,” Opt. Express 21(S5Suppl 5), A750–A764 (2013). [CrossRef]   [PubMed]  

16. T. Ben-Messaoud, G. Landry, J. P. Gariepy, B. Ramamoorthy, P. V. Ashrit, and A. Hache, “High contrast optical switching in vanadium dioxide thin films,” Opt. Commun. 281(24), 6024–6027 (2008). [CrossRef]  

17. Y. F. Gao, S. B. Wang, L. T. Kang, Z. Chen, J. Du, X. L. Liu, H. J. Luo, and M. Kanehira, “VO2-Sb:SnO2 composite thermochromic smart glass foil,” Energ. Environ. Sci. 5(8), 8234–8237 (2012). [CrossRef]  

18. Y. F. Gao, S. B. Wang, H. J. Luo, L. Dai, C. X. Cao, Y. L. Liu, Z. Chen, and M. Kanehira, “Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control,” Energ Environ Sci 5(3), 6104–6110 (2012). [CrossRef]  

19. Y. Zhou, Y. Cai, X. Hu, and Y. Long, “VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission,” J. Mater. Chem. A (2014). [CrossRef]  

20. W. Ning, H. Yizhong, S. Magdassi, D. Mandler, L. Hai, and L. Yi, “Formation of VO2 zero-dimensional/nanoporous layers with large supercooling effects and enhanced thermochromic properties,” Rsc Advances 3(19), 7124–7128 (2013). [CrossRef]  

21. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. A 8(3), 549–553 (1991). [CrossRef]  

22. I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt. 46(12), 2219–2228 (2007). [CrossRef]   [PubMed]  

23. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6(5), 3789–3799 (2012). [CrossRef]   [PubMed]  

24. S. Wilson and M. Hutley, “The optical properties of'moth eye'antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).

25. L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband antireflection characteristics,” Appl. Phys. Express 3(10), 102602 (2010). [CrossRef]  

26. O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4), 041910 (2009). [CrossRef]   [PubMed]  

27. H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99(18), 183107 (2011). [CrossRef]  

28. W. L. Min, B. Jiang, and P. Jiang, “Bioinspired Self‐Cleaning Antireflection Coatings,” Adv. Mater. 20(20), 3914–3918 (2008). [CrossRef]  

29. N. R. Mlyuka, G. A. Niklasson, and C. G. Granqvist, “Thermochromic VO2-based multilayer films with enhanced luminous transmittance and solar modulation,” Phys Stat. Solidi A 206(9), 2155–2160 (2009). [CrossRef]  

30. T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,” Trans. Opt. Soc. 33(3), 73–134 (1931). [CrossRef]  

31. American Society for Testing and Materials, “ASTM G173-03 reference spectra,” (2013), http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Three different 3-dimensional models of VO2-based perforated thin films, (a) square holes in square lattices, (b) circular holes in square lattices and (c) circular holes in hexagonal lattices are densely packed with defined periodicity and hole length/radius as labeled.
Fig. 2
Fig. 2 Thermochroimc properteis for square holes perforated in VO2 square cells at different values of periodicity and square hole length. (a) Contour lines (red dashed) of ΔTsol are overlaid upon a coutour map of Tlum, (b) thermochomic properties of selected samples in table form.
Fig. 3
Fig. 3 Relationship between nanogrid parameters and thermochromic properties in terms of (a) square holes (length varied from 30 nm to 150 nm) in square cells; (b) circular holes (radius varied from 20 nm to 80 nm) in square cells; (c) circular holes (radius varied from 20 nm to 80 nm) in hexagonal cells; (d) four different structural systems with similar fill factor; (e) solar transmittance and (f) light modulation ability as a function of fill factor ( = A(hole) A(cell) ) of perforated films.
Fig. 4
Fig. 4 Computed (a) thickness effect on ΔTsol (black) and Tlum(avg) (blue) for nanogrid films with period = 180 nm and hole radius = 80 nm, (b) thickness effect on continuous thin films (dashed black) and perforated films (solid red).
Fig. 5
Fig. 5 (a) Computed spectra of transmittance for perforated VO2 films with different periodicity and FF as compared to continuous thin films. (All film thickness = 300 nm) (b) solar transmittance and (c) light modulation ability as a function of periodicity.

Tables (2)

Tables Icon

Table 1 A comparison of simulated thermochromic performances presented by contemporary VO2 smart window systems

Tables Icon

Table 2 Typical thermochromic properties for the samples with optimized nano-patterning parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T lum = λ=380nm 780nm ϕ lum T(λ)dλ λ=380nm 780nm ϕ lum dλ T NIR = λ=780nm 2500nm A M 1.5 (λ)T(λ)dλ λ=780nm 2500nm A M 1.5 (λ)dλ T sol = λ=300nm 2500nm A M 1.5 (λ)T(λ)dλ λ=300nm 2500nm A M 1.5 (λ)dλ
Δ T lum = T lum(low) T lum(high) Δ T NIR = T NIR(low) T NIR(high) Δ T sol = T sol(low) T sol(high)
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.