Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Development of Au/Ag Substrate with Alternating Nanosphere Array for SERS-based Biosensing

Not Accessible

Your library or personal account may give you access

Abstract

Nanostructure substrates are effective biosensor to spectrally differentiate multiple compounds by Surface-enhanced Raman scattering (SERS). Metal film over nanosphere (MFON) has been demonstrated to exhibit reproducible and predictable Raman enhancement. MFON can be fabricated using an economical process in which polystyrene (PS) nanospheres are self-assembled on a planar solid supports and then followed by metal coating. In this work, we investigate the MFON substrates with bimetallic coating to combine the optical-enhancing and stability features from Ag and Au layers. The SERS responses are then quantified from the resultant bimetallic structures with 2-Naphthalenethiol. We show that the bimetallic substrate of optimal Au/Ag thickness ratio renders SERS enhancement and stability exceeding those of the Au-coated MFON. Compared to Au array, the bimetallic substrate exhibits quasi-bimetallic nanoparticles of surpassing SERS (2.5 times) with enhancement factor determined to be 2×107. As a proof-of-concept for biosensing in microfluidics, SERS nanotag was prepared and tested on the optimized BMFON. In addition, we propose a fabrication scheme to construct MFON with alternating sizes (100nm and 400nm) of nanosphere. At optimal proportional amount, the 100nm-spheres were packed within the gaps between the 400nm-spheres. The resultant morphology renders additional nanogaps that could possibly lead to increment in SERS enhancement.

© 2011 OSA/SPIE

PDF Article
More Like This
Preparation and Analysis of the Au-SiO2 Multi-layer Nanospheres as High SERS Resolution Substrate

Weihua Tian, Kaiyu Wu, Xiulan Cheng, Xiaodong Chen, Rui Chen, and Ying Wang
83110K Asia Communications and Photonics Conference and Exhibition (ACP) 2011

Dense 2D Arrays of Au@Ag and Au@Ag@Au as Efficient SERS Substrates

Yeji Song, Pincella Francesca, Katsuhiro Isozaki, and Kazushi Miki
16p_D5_2 JSAP-OSA Joint Symposia (JSAP) 2013

Silver film deposited over large-area self-assembled array of silica nanospheres as ultrasensitive SERS substrate

Xu Hou, Qi Wang, Guoming Mao, Hao Liu, and Xiaomin Ren
s1831 Conference on Lasers and Electro-Optics/Pacific Rim (CLEO/PR) 2017

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.